Answer:
The initial velocity is 38.46 m/s.
Explanation:
The horizontal distance travel by the tennis ball = 13 m
The height at which the tennis ball dropped = 56 cm
Now calculate the initial speed of tennis ball.
The vertical velocity is zero.
Below is the calculation. Here, first convert centimetre into kilometre. So, height at which ball dropped is 0.56 km.




Answer:
The tendency of an object to resist changes in its state of motion varies with mass. Mass is that quantity that is solely dependent upon the inertia of an object. The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.
Explanation:
I would choose the option B.
F = ma
a = 75 / 25 = 3 m/s^2
Answer:
0.00016 kg
Explanation:
Given:
Power = P = 1.2 × 10⁹ Watts
Power = work done / Time
efficiency = 0.30
Input power = 1.2 × 10⁹ / 0.30 = 4 × 10⁹ W
Energy = 4 × 10⁹ x 60 x 60 = 1.44 x 10¹³ joules
E = m c² , where c is the speed of light and m is the mass.
⇒ mass = m = E / c² = (1.44 x 10¹³) / (3 × 10⁸ )²
= 0.00016 kg
The answer is a. Hope this helps :)