Answer:
Specific heat at constant pressure is = 1.005 kJ/kg.K
Specific heat at constant volume is = 0.718 kJ/kg.K
Explanation:
given data
temperature T1 = 50°C
temperature T2 = 80°C
solution
we know energy require to heat the air is express as
for constant pressure and volume
Q = m × c × ΔT ........................1
here m is mass of the gas and c is specific heat of the gas and Δ
T is change in temperature of the gas
here both Mass and temperature difference is equal and energy required is dependent on specific heat of air.
and here at constant pressure Specific heat is greater than the specific heat at constant volume,
so the amount of heat required to raise the temperature of one unit mass by one degree at constant pressure is
Specific heat at constant pressure is = 1.005 kJ/kg.K
and
Specific heat at constant volume is = 0.718 kJ/kg.K
Answer:
0.5 Hz
Hope you find this helpful. Please mark me as brainliest!
Answer:
5.5 m/ sec
Explanation:
Because the inclined surface is frictionless so we can assume that total change of energy is zero
i-e ΔE = 0
Or we can say that difference between final and initial energy is zero i-e
Ef- Ei =0
Where,
Ef= final energy at the top of the ramp= KEf+PEf
Ei= Initial energy at the bottom of the ramp=KEi+PEi
So we have
(KEf+PEf)-(KEi+PEi)=0
==>KEf-KEi+PEf-PEi=0 -------------(1)
KEf = mgh = 200×9.8×h
Where h= Sin 22 = h/d= h/4.1
or
0.375×4.1=h
or h= 1.54 m
So, PEf= 200×9.8×1.54=3018.4 j
and KEf= 1/2 m
= 0.5×200×0=0 j
PEi= mgh = 200×9.8×0=0 j
KEi= 1/2 m
=0.5×200×
=100
j
Put these values in eq 1, we get;
0-100
+3018.4-0=0
-100
=-3018.4
==>
= 30.184
==> Vi = 
Answer:
i think its the third one or second one
Answer:

Explanation:
According to given:
- molecular mass of glycerin,

- molecular mass of water,

- ∵Density of water is

- ∴mass of water in 316 mL,

- mass of glycerin,

- pressure of mixture,

- temperature of mixture,

<em>Upon the formation of solution the vapour pressure will be reduced since we have one component of solution as non-volatile.</em>
<u>moles of water in the given quantity:</u>



<u>moles of glycerin in the given quantity:</u>



<u>Now the mole fraction of water:</u>



<em>Since glycerin is non-volatile in nature so the vapor pressure of the resulting solution will be due to water only.</em>


