We must remember that the total net force equation at
constant velocity is:
<span>F – Ff = 0</span>
of
F - µN = 0
Using Newton's 2nd Law of Motion:<span>
F = m a
<span>Where,
F = net force acting on the body
m = mass of the body
a = acceleration of the body
Since the cart is moving at a constant velocity, then
acceleration is zero, hence the working equation simplifies to
F = net Force = 0
Therefore,
F - µN = 0
where
µ = coefficient of friction = 0.20
N = normal force acting on the cart = 12 N
Therefore,
F - 0.20(12) = 0
<span>
F = 2.4 N </span></span></span>
The more energy orbits the radiation jumps the more energy it has. So if the frequency stays the same each time then the wavelength will get longer if there is more energy.
In this case the situation in which the radiation jumps the most energy orbits is when: the electron jumps from the fourth orbit to the first orbit. This will emit the longest wavelength
Answer:
cm
Explanation:
= separation between the slits = 2783 x 10⁻⁹ m
= wavelength of coherent light = 644 nm = 644 x 10⁻⁹ m
= Distance of the screen = 6 cm = 0.06 m
= Position of nth bright fringe
Position of nth bright fringe is given as
for n = 2

m
for n = 4

m
Distance between 4th and 2nd bright fringes is given as

cm
Answer:before throwing and after catching the ball
Explanation:
When basketball is in the hand of player net force on it zero as holding force is canceled by gravity Force. During its entire motion gravitational force is acting on the ball which is acting downward. Even at highest point gravity is constantly acting downwards.
After catching the ball net force on it zero as holding force is canceled by gravity force and ball is continue to be in stationary motion.