The molecule BH3 is trigonal planar, with B in the center and H in the three vertices. Ther are no free electrons. All the valence electrons are paired in and forming bonds.
There are four kind of intermolecular attractions: ionic, hydrogen bonds, polar and dispersion forces.
B and H have very similar electronegativities, Boron's electronegativity is 2.0 and Hydrogen's electronegativity is 2.0.
The basis of ionic compounds are ions and the basis of polar compounds are dipoles.
The very similar electronegativities means that B and H will not form either ions or dipoles. So, that discards the possibility of finding ionic or polar interactions.
Regarding, hydrogen bonds, that only happens when hydrogen bonds to O, N or F atoms. This is not the case, so you are sure that there are not hydrogen bonds.
When this is the case, the only intermolecular force is dispersion interaction, which present in all molecules.
Then, the answer is dispersion interaction.
Answer:
B. The energy absorbed in the first move is greater than the energy released in the second move.
Explanation:
It takes large amounts of energy for a electron to jump energy levels and the further it moves, the more it takes.
Eroded sediments from further upstream clogged Jakarta’s rivers and canals, causing them to overflow. Similar erosion-related floods have occurred in many other countries, such as Colombia, India, the Philippines and Democratic Republic of the Congo.
This question seems to be an essay question from experiment. Different solution of oxidizing agent will have different strength. Sulfuric acid or H2SO4 is weaker oxidizing agent when compared to nitric acid (HNO3). In this case, if you subtitute the H2SO4 you wouldn't be able to get the same result for the experiment.