Answer:
Option C. Energy Profile D
Explanation:
Data obtained from the question include:
Enthalpy change ΔH = 89.4 KJ/mol.
Enthalpy change (ΔH) is simply defined as the difference between the heat of product (Hp) and the heat of reactant (Hr). Mathematically, it is expressed as:
Enthalpy change (ΔH) = Heat of product (Hp) – Heat of reactant (Hr)
ΔH = Hp – Hr
Note: If the enthalpy change (ΔH) is positive, it means that the product has a higher heat content than the reactant.
If the enthalpy change (ΔH) is negative, it means that the reactant has a higher heat content than the product.
Now, considering the question given, the enthalpy change (ΔH) is 89.4 KJ/mol and it is a positive number indicating that the heat content of the product is higher than the heat content of the reactant.
Therefore, Energy Profile D satisfy the enthalpy change (ΔH) for the formation of CS2 as it indicates that the heat content of product is higher than the heat content of the reactant.
heterogeneous, because it does not have a uniform texture
hope That helps
Answer : The value of rate constant is, 
Explanation :
First we have to calculate the rate constant, we use the formula :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = ?
t = time passed by the sample = 20 min
a = let initial amount of the reactant = 100 g
a - x = amount left after decay process = 100 - 85 = 15 g
Now put all the given values in above equation, we get


Therefore, the value of rate constant is, 
The elements of group 1 makes ionic bond with the elements of group 7 due to high difference of electronegativity values.
<h3>Type of bond between group 1 and 7</h3>
The elements of first group lose its one outermost electrons while on the other hand, the elements of seven group needs one electron so they gain that one electron so they make an ionic bond with each other.
So we can conclude that the elements of group 1 makes ionic bond with the elements of group 7 because of the high difference of electronegativity values.
Learn more about electronegativity here: brainly.com/question/2415812
Answer:
170.38g is the mass of 1 mole of C₁₂H₂₆
Explanation:
To solve this question we must find the molar mass of the alkane C₁₂H₂₆. The molar mass is defined as the mass of one mole of a substance.
In 1 mole of C₁₂H₂₆ we have 12 moles of Carbon and 26 moles of Hydrogen. With the periodic table of elements we can know the molar mass of 1 mole of Carbon and 1 mole of hydrogen, and, thus, the molar mass of the alkane (Molar mass C = 12.01g/mol, H = 1.01g/mol)
<em>Molar mass C₁₂H₂₆:</em>
12C = 12*12.01g/mol = 144.12g/mol
26H = 26*1.01g/mol = 26.26g/mol
144.12g/mol + 26.26g/mol =
<h3>170.38g is the mass of 1 mole of C₁₂H₂₆</h3>