0.019 Hope this helps! :)
Answer:
Cupid nitrate is what I'm going for
Hydrochloric acid is usually purchased in a concentrated form that is 37.0% HCl by mass and has a density of 1.20g/mL. Calculate the molarity of the concd HCl.
1.20 g/mL x 1000 mL x 0.37 x (1/36.5) = about 12 M or so but you do it exactly.
Then mL x M = mL x M
mL x 12 M = 2800 mL x 0.475
Solve for mL of the concd HCl solution.
Explanation:
The given data is as follows.


Now, according to Michaelis-Menten kinetics,
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
where, S = substrate concentration =
M
Now, putting the given values into the above formula as follows.
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
![V_{o} = 6.8 \times 10^{-10} \mu mol/min \times [\frac{10.4 \times 10^{-6} M}{(10.4 \times 10^{-6}M + 5.2 \times 10^{-6} M)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%206.8%20%5Ctimes%2010%5E%7B-10%7D%20%5Cmu%20mol%2Fmin%20%5Ctimes%20%5B%5Cfrac%7B10.4%20%5Ctimes%2010%5E%7B-6%7D%20M%7D%7B%2810.4%20%5Ctimes%2010%5E%7B-6%7DM%20%2B%205.2%20%5Ctimes%2010%5E%7B-6%7D%20M%29%7D%5D)

= 
This means that
would approache
.
Answer: assume pathogens are present and treat the samples accordingly
Explanation:
When investigators are unable to conclusively ascertain the source of a biological sample found at a crime scene, the correct thing to do is to treat it as if pathogens are present in it and handle it according to set rules on how to handle pathogens.
This is done to ensure that if a pathogen is indeed present, it would not cause a health emergency by infecting those who come in contact with the samples at the scene.