For future reference, you could use Desmos for graphs. but should be (1,1)
Answer:
y=1/2x−2
Step-by-step explanation:
if you find the 2 point that touch the y and x-axis on the graph, (4,0) and (0,-2), and put it in y=mx+b formula, you get the answer.
Answer:
El perímetro del triángulo rectángulo es aproximadamente 29.627.
Step-by-step explanation:
Las coordendas de los vértices del triángulo rectángulo son
,
y
. En primer lugar, determinamos las longitudes de los segmentos AB, BC y AC por el Teorema de Pitágoras:
![AB = \sqrt{(-8-1)^{2}+[4-(-2)]^{2}}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7B%28-8-1%29%5E%7B2%7D%2B%5B4-%28-2%29%5D%5E%7B2%7D%7D)

![BC = \sqrt{[5-(-8)]^{2}+(2-4)^{2}}](https://tex.z-dn.net/?f=BC%20%3D%20%5Csqrt%7B%5B5-%28-8%29%5D%5E%7B2%7D%2B%282-4%29%5E%7B2%7D%7D)

![AC =\sqrt{(5-1)^{2}+[2-(-2)]^{2}}](https://tex.z-dn.net/?f=AC%20%3D%5Csqrt%7B%285-1%29%5E%7B2%7D%2B%5B2-%28-2%29%5D%5E%7B2%7D%7D)

El perímetro del triángulo (
) es la suma de todos estos segmentos:


El perímetro del triángulo rectángulo es aproximadamente 29.627.
First, find the perimeter of the circle
p = 2 × π × r
p = 2 × 3,14 × 19
p = 119.32
The perimeter of the circle is 119.32 cm
Second, find the central angle
Comparison of the central angle, full rotation angle, the arc, and the perimeter can be written as
angle/(full rotation angle) = arc/perimeter
angle = arc/perimeter × (full rotation angle)
Input the numbers
angle = arc/perimeter × (full rotation angle)
angle = 6/119.32 × 360°
angle = 6(360°)/119.32
angle = 2,160/119.32
angle = 18.1
The central angle would be 18.1°
Answer:145
Step-by-step explanation:
if h=33 and g=5 the expression would look like 33-4x5 frist 33-4=29 so now we imes by 5, 29x5=145 so 145 is your answer