Answer:
1: surface temperature
2: red giant
3: The brightest stars are called supergiants. Star clusters are rich in stars just off the main sequence called red giants. Main sequence stars are called dwarfs.
4: A white dwarf is very dense
5: red giant
plz mark me as brainliest :)
Answer:
(a) ε = 1373.8.
(b) The wingtip which is at higher potential.
Explanation:
(a) Finding the potential difference between the airplane wingtips.
Given the parameters
wingspan of the plane is = 18.0m
speed of the plane in north direction is = 70.0m/s
magnetic field of the earth is = 1.20μT
The potential difference is given as:
ε = Blv
where ε = potential difference of wingtips
B = magnetic field of earth
l = wingspan of airplane
v = speed of airplane
ε = 1.2 x 18.0 x 63.6
ε = 1373.8
(b) Which wingtip is at higher potential?
The wingtip which is at higher potential.
Answer:

Explanation:
Gauge pressure at the bottom of the cylinder depends on the height of water in the cylinder
So here we can say that

now when liquid is filled to height "h" in base area "A" then gauge pressure of the liquid at the bottom is given as

now we put the whole liquid into another cylinder with twice radius of the first cylinder
So area becomes 4 times
now by volume conservation we can say that if area is increased by 4 times then height of liquid will decrease by 4 times
so we have

so gauge pressure is given as

The units are not consistent - 1 m/s is not the same as 1 km/h.
First thing to do would be to convert from one unit of speed to the other, say km/h to m/s. There are 1000 meters (m) for every kilometer (km) and 3600 seconds (s) for every hour (h), so

So in fact 1 km/h is about 4 times slower than 1 m/s.