Answer:
155fts
Explanation:
We apply the bernoulli's equation to get the depth of water.
We have the following information
P1 = pressure at top water surface = 0
V1 = velocity at too water surface = 0
X1 = height of water surface = h
Hf = friction loss = 0
P2 = pressure at exit = 0
V2 = velocity at exit if penstock = 100ft/s
X2 = height of penstock = 0
g = acceleration due to gravity = 32.2ft/s²
Applying these values to the equation
0 + 0 + h = 0 + v2²/2g +0 + 0
= h = 100²/2x32.2
= 10000/64.4
= 155.28ft
= 155
Answer:
Explanation:
<u>Projectile Motion</u>
In projectile motion, there are two separate components of the acceleration, velocity and displacement. The horizontal component has zero acceleration (assuming no friction), and the acceleration in the vertical direction is always the acceleration of gravity. The basic formulas are shown below:
Where is the angle of launch respect to the positive horizontal direction and Vo is the initial speed.
The horizontal and vertical distances are, respectively:
The total flight time can be found as that when y = 0, i.e. when the object comes back to ground (or launch) level. From the above equation we find
Using this time in the horizontal distance, we find the Range or maximum horizontal distance:
Let's solve for
This is the general expression to determine the angles at which the projectile can be launched to hit the target. Recall the angle can have to values for fixed positive values of its sine:
Or equivalently:
Given Vo=37 m/s and R=70 m
And
Answer:
Computer program
Explanation:
I use Revit and its way better to do all that you can see 2D 3D the measurements and its super easy to use hope this helps
Answer:
work=281.4KJ/kg
Power=4Kw
Explanation:
Hi!
To solve follow the steps below!
1. Find the density of the air at the entrance using the equation for ideal gases
where
P=pressure=120kPa
T=20C=293k
R= 0.287 kJ/(kg*K)=
gas constant ideal for air
2.find the mass flow by finding the product between the flow rate and the density
m=(density)(flow rate)
flow rate=10L/s=0.01m^3/s
m=(1.43kg/m^3)(0.01m^3/s)=0.0143kg/s
3. Please use the equation the first law of thermodynamics that states that the energy that enters is the same as the one that must come out, we infer the following equation, note = remember that power is the product of work and mass flow
Work
w=Cp(T1-T2)
Where
Cp= specific heat for air=1.005KJ/kgK
w=work
T1=inlet temperature=20C
T2=outlet temperature=300C
w=1.005(300-20)=281.4KJ/kg
Power
W=mw
W=(0.0143)(281.4KJ/kg)=4Kw