Answer:

Explanation:
Given that
R=8 ft
Width= 10 ft
We know that hydro statics force given as
F=ρ g A X
ρ is the density of fluid
A projected area on vertical plane
X is distance of center mass of projected plane from free surface of water.
Here
X=8/2 ⇒X=4 ft
A=8 x 10=80 
So now putting the values
F=ρ g A X
F=62.4(32.14)(80)(4)

Answer:
Explanation:
Obtain the following properties at 6MPa and 600°C from the table "Superheated water".

Obtain the following properties at 10kPa from the table "saturated water"

Calculate the enthalpy at exit of the turbine using the energy balance equation.

Since, the process is isentropic process 

Use the isentropic relations:

Calculate the enthalpy at isentropic state 2s.

a.)
Calculate the isentropic turbine efficiency.

b.)
Find the quality of the water at state 2
since
at 10KPa <
<
at 10KPa
Therefore, state 2 is in two-phase region.

Calculate the entropy at state 2.

Calculate the rate of entropy production.

since, Q = 0

Answer:
wheeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee