Water moves from an area of higher water potential (aka. "more water" in simple language) to an area of lower water potential (aka. "less water" in simple language).
For A, cells in carrots have water stored in their cytoplasm, where many soluble substances may be found (e.g. sodium ions). On the other hand, pure water has no other soluble substances other than the water molecules (I.e. H2O). Pure water will thus have a higher water potential as compared to the water in carrot cells, and so, water will move from pure water into the carrot cells via osmosis down a concentration gradient.
B. Corn syrup is water that has high concentrations of sugars, thus it is very likely to have a lower water potential than the cells of carrots. Water will move from within the cells of carrots and out to the corn syrup, down a concentration gradient.
C. The water in carrot cells will stay the same, since carrot cells have the same water potential as the surrounding solution which has the same water potential as cytoplasm.
Hope this helps! :)
process by which one separates compounds from one another by passing a mixture through column that retains some compounds longer than others.
Answer:
Approximately 6.81 × 10⁵ Pa.
Assumption: carbon dioxide behaves like an ideal gas.
Explanation:
Look up the relative atomic mass of carbon and oxygen on a modern periodic table:
Calculate the molar mass of carbon dioxide
:
.
Find the number of moles of molecules in that
sample of
:
.
If carbon dioxide behaves like an ideal gas, it should satisfy the ideal gas equation when it is inside a container:
,
where
is the pressure inside the container.
is the volume of the container.
is the number of moles of particles (molecules, or atoms in case of noble gases) in the gas.
is the ideal gas constant.
is the absolute temperature of the gas.
Rearrange the equation to find an expression for
, the pressure inside the container.
.
Look up the ideal gas constant in the appropriate units.
.
Evaluate the expression for
:
.
Apply dimensional analysis to verify the unit of pressure.