I'd guess A or D, but my gut says A
Answer:
Therefore the concentration of the reactant after 4.00 minutes will be 0.686M.
Explanation:
The unit of k is s⁻¹.
The order of the reaction = first order.
First order reaction: A first order reaction is a reaction in which the rate of reaction depends only the value of the concentration of the reactant.
![-\frac{d[A]}{dt} =kt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3Dkt)
[A] = the concentration of the reactant at time t
k= rate constant
t= time
Here k= 4.70×10⁻³ s⁻¹
t= 4.00
[A₀] = initial concentration of reactant = 0.700 M
![-\frac{d[A]}{dt} =kt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3Dkt)
![\Rightarrow -\frac{d[A]}{[A]}=kdt](https://tex.z-dn.net/?f=%5CRightarrow%20-%5Cfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%3Dkdt)
Integrating both sides
![\Rightarrow\int -\frac{d[A]}{[A]}=\int kdt](https://tex.z-dn.net/?f=%5CRightarrow%5Cint%20-%5Cfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%3D%5Cint%20kdt)
⇒ -ln[A] = kt +c
When t=0 , [A] =[A₀]
-ln[A₀] = k.0 + c
⇒c= -ln[A₀]
Therefore
-ln[A] = kt - ln[A₀]
Putting the value of k, [A₀] and t
- ln[A] =4.70×10⁻³×4 -ln (0.70)
⇒-ln[A]= 0.375
⇒[A] = 0.686
Therefore the concentration of the reactant after 4.00 minutes will be 0.686M.
Copper substance cannot be decomposed by a chemical change.
<h3 />
- When heated, the copper to carbonate breaks down into copper to oxide. The copper carbonate, which is dark in colour, releases carbon dioxide as well.Because they are the simplest chemically, elements cannot be broken down by chemical processes.
- Elements are those pure compounds that cannot be broken down by reactions, heating, electrolysis, or other common chemical processes. Examples of elements are oxygen, gold, and silver. Its makeup stays the same, though. One instance of a physical change is melting. A physical change is when a sample of matter experiences a change in some of its qualities but not in its identity. Water turns into water vapour when it is heated.
Learn more about copper here:
brainly.com/question/493292
#SPJ4
The answer is: To see how fast hydrogen peroxide decomposes into water and oxygen.
Hope I helped god bless U ;)
Answer:
if my calculation are correct, it's 295 grams
Explanation:
because liters converted to grams is .1=100 so if you take 2.95 times 100, it equals 295