Alcoholic fermentation is mainly used by various yeast species to make energy.
If there is no oxygen available, the yeasts have in the alcoholic fermentation another possibility of energy supply. But they can - as compared with cellular respiration - recover substantially less energy from glucose, in the form of adenosine triphosphate (ATP): by complete oxidation, a molecule of glucose provides 36 molecules of ATP, but by alcoholic fermentation only 2 molecules of ATP. These two molecules are obtained in glycolysis, the first step in the chain of reactions for both cellular respiration and fermentation.
The two additional steps of the fermentation, and thus the production of ethanol serve not to make energy, but the regeneration of the NAD + cofactor used by the enzymes of glycolysis. As NAD + is available in limited quantities, it is converted by the NADH reduced state fermentation enzymes to the NAD + oxidized state by reduction of acetaldehyde to ethanol.
Answer:
answer A
Explanation:
A) the quantity of usable energy declines with each transformation → True . Since the entropy increases , the amount of energy that can not be converted to useful energy increases and since the total amount of energy is conserved, the quantity of useful energy decreases.
B) energy can be neither created nor destroyed → False in the context of entropy , since the energy is conserved regardless of the changes in entropy (First law → conservation of energy vs second law → increase of entropy)
C) life should be impossible → False . Since the second law states that the entropy of the <u>universe </u>increases with time . Then the system (life) can experience a decrease in entropy at the expense of a larger increase in entropy of the surroundings ( so the net increase is positive)
D) it is not possible to observe an increase in molecular organisation → False . Same as C. A system can experience a decrease in entropy at the expense of a larger increase in entropy of the surroundings ( so the net increase is positive)
Answer:
this is because the van der waals forces or also known as induced dipole-dipole interactions increase because more electrons are present within an atom as you go down
Explanation:
-
Answer:
a. Molarity= 
b. Molality= 
Explanation:
Hello,
In this case, given the information about the aniline, whose molar mass is 93g/mol, one could assume the volume of the solution is just 200 mL (0.200 L) as no volume change is observed when mixing, therefore, the molarity results:

Moreover, the molality:

Best regards.
Answer:
12.01
Explanation:
(12.00*98.93% + 13*1.07%) /100% = 12.01