Answer:
C₆H₈O₇+ 3NaHCO₃ --› Na₃C₆H₅O₇ + 3CO2 + 3H₂O
Explanation:
The reaction occuring in lava lamp is acid base reaction.
When you drop tablet into water the citric acid reacts with sodium bicarbonate and forms water, a salt, and bubbles of carbon dioxide gas.
Answer:
Metamorphic rock is classified by texture and composition. The texture of a metamorphic rock can be either foliated and appear layered or banded, or non-foliated and appear uniform in texture without banding. Foliated rocks contain many different kinds of minerals, but non-foliated rocks contain only one main mineral, which contributes to their more uniform appearance. Igneous rocks are classified according to mode of occurrence, texture, mineralogy, chemical composition, and the geometry of the igneous body.
Explanation:
Given buffer:
potassium hydrogen tartrate/dipotassium tartrate (KHC4H4O6/K2C4H4O6 )
[KHC4H4O6] = 0.0451 M
[K2C4H4O6] = 0.028 M
Ka1 = 9.2 *10^-4
Ka2 = 4.31*10^-5
Based on Henderson-Hasselbalch equation;
pH = pKa + log [conjugate base]/[acid]
where pka = -logKa
In this case we will use the ka corresponding to the deprotonation of the second proton i.e. ka2
pH = -log Ka2 + log [K2C4H4O6]/[KHC4H4O6]
= -log (4.31*10^-5) + log [0.0451]/[0.028]
pH = 4.15
Answer:
10.5g
Explanation:
First, let us calculate the number of mole of NaHCO3 present in the solution. This is illustrated below:
Volume = 250mL = 250/1000 = 0.25L
Molarity = 0.5M
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 0.5 x 0.25
Mole = 0.125 mole
Now, we shall be converting 0.125 mole of NaHCO3 to grams to obtain the desired result. This can be achieved by doing the following:
Molar Mass of NaHCO3 = 23 + 1 + 12 +(16x3) = 23 + 1 +12 +48 = 84g/mol
Number of mole of NaHCO3 = 0.125 mole
Mass of NaHCO3 =?
Mass = number of mole x molar Mass
Mass of NaHCO3 = 0.125 x 84
Mass of NaHCO3 = 10.5g
Therefore, 10.5g of NaHCO3 is needed.