Answer:
12 grams
<em>Please mark as Brainliest :)</em>
Answer:
[K₂CrO₄] → 8.1×10⁻⁵ M
Explanation:
First of all, you may know that if you dilute, molarity must decrease.
In the first solution we need to calculate the mmoles:
M = mmol/mL
mL . M = mmol
0.0027 mmol/mL . 3mL = 0.0081 mmoles
These mmoles of potassium chromate are in 3 mL but, it stays in 100 mL too.
New molarity is:
0.0081 mmoles / 100mL = 8.1×10⁻⁵ M
I’m positive it’s gonna be c
Answer : The molecular weight of a substance is 157.3 g/mol
Explanation :
As we are given that 7 % by weight that means 7 grams of solute present in 100 grams of solution.
Mass of solute = 7 g
Mass of solution = 100 g
Mass of solvent = 100 - 7 = 93 g
Formula used :

where,
= change in freezing point
= temperature of pure water = 
= temperature of solution = 
= freezing point constant of water = 
m = molality
Now put all the given values in this formula, we get


Therefore, the molecular weight of a substance is 157.3 g/mol
Answer:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
Explanation:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol can be calculated using the following equation:
<u>Where:</u>
<em>μ (l): is the chemical potential of 2-propanol in solution </em>
<em>μ° (l): is the chemical potential of pure 2-propanol </em>
<em>R: is the gas constant = 8.314 J K⁻¹ mol⁻¹ </em>
<em>T: is the temperature = 82.3 °C = 355.3 K </em>
<em>x: is the mole fraction of 2-propanol = 0.41 </em>

Therefore, the chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
I hope it helps you!