How much it has to drop and how heavy it is. Hope this is what you're looking for:)
Answer:
on the right side two and on left side it is6 yes it is a balanced equation pls mark me as the brainliset hope it helps you
Answer:
The enthalpy of the solution is -35.9 kJ/mol
Explanation:
<u>Step 1:</u> Data given
Mass of lithiumchloride = 3.00 grams
Volume of water = 100 mL
Change in temperature = 6.09 °C
<u>Step 2:</u> Calculate mass of water
Mass of water = 1g/mL * 100 mL = 100 grams
<u>Step 3:</u> Calculate heat
q = m*c*ΔT
with m = the mass of water = 100 grams
with c = the heat capacity = 4.184 J/g°C
with ΔT = the chgange in temperature = 6.09 °C
q = 100 grams * 4.184 J/g°C * 6.09 °C
q =2548.1 J
<u>Step 4:</u> Calculate moles lithiumchloride
Moles LiCl = mass LiCl / Molar mass LiCl
Moles LiCl = 3 grams / 42.394 g/mol
Moles LiCl = 0.071 moles
<u>Step 5:</u> Calculate enthalpy of solution
ΔH = 2548.1 J /0.071 moles
ΔH = 35888.7 J/mol = 35.9 kJ/mol (negative because it's exothermic)
The enthalpy of the solution is -35.9 kJ/mol
Nearly all life on Earth gets its energy from the sun, and the sun gets its energy through the process of nuclear fusion, which is why these type of energy is important to life on Earth.
1) Molecular formula of ammonium sulfide
(NH4)2 S
2) That means that there are 2*4 = 8 atoms of hydrogen in each molecule of ammoium sulfide, so in 5.20 mol of molecules will be 8 * 5.20 mol = 41.6 moles of atoms of hydrogen
3) To pass to number of atoms multiply by Avogadro's number: 6.022 * 10^23
41.6 moles * 6.022 * 10^23 atoms / mol = 250.5 * 10^23 = 2.50 * 10^25 atoms
Answer: 2.50 * 10^25