Answer:
The final temperature is:- 7428571463.57 °C
Explanation:
The expression for the calculation of heat is shown below as:-
Where,
is the heat absorbed/released
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass of water = 1.75 mg = 0.00175 g ( 1 g = 0.001 mg)
Specific heat of water = 4.18 J/g°C
Initial temperature = 35 °C
Final temperature = x °C
kcal
Also, 1 kcal = 4.18 kJ =
J
So, Q =
J = 54340000 J
So,

Thus, the final temperature is:- 7428571463.57 °C
Answer:
-85 °C
Explanation:
O and S are in the same group( Group 16). Since S is below O it's atomic mass is higher than O. So molar mass of H2S is higher than H2O. The strength of Vanderwaal Interactions ( London dispersion forces) increases when the molar mass increases. However, only H2O can form H bonds with each other. This is because electronegativity of O is higher than S and therefore H in H2O has a higher partial positive charge than H of H2S.
H bond dominate among these 2 types of forces so the strength of attractions between molecules is higher in H2O than H2S. Therefore more energy should be supplied for H2O to break inter
molecular forces and convert from solid to liquid state than H2S. So mpt of H2O must be higher than that of H2S.
<span>C. 11.2 L
There are several different ways to solve this problem. You can look up the density of CO2 at STP and work from there with the molar mass of CO2, but the easiest is to assume that CO2 is an ideal gas and use the ideal gas properties. The key property is that a mole of an idea gas occupies 22.413962 liters. And since you have 0.5 moles, the gas you have will occupy half the volume which is
22.413962 * 0.5 = 11.20698 liters. And of the available choices, option "C. 11.2 L" is the closest match.
Note: The figure of 22.413962 l/mole is using the pre 1982 definition of STP which is a temperature of 273.15 K and a pressure of 1 atmosphere (1.01325 x 10^5 pascals). Since 1982, the definition of STP has changed to a temperature of 273.15 K and a pressure of exactly 10^5 pascals. Because of this lower pressure, one mole of an ideal gas will have the higher volume of 22.710947 liters instead of the older value of 22.413962 liters.</span>
The formula units in the substances are as follows:
- Br2 = 8.99 × 10^23 formula units
- MgCl2 = 1.51 × 10^24 formula units
- H2O = 2.57 × 10^24 formula units
- Fe = 2.57 × 10^24 formula units
<h3>How many moles are in 239.2 g of the given substances?</h3>
The moles of the substances are determined from their molar mass.
Molar mass of the substances is given as follows:
- Br2 = 160 g/mol
- MgCl2 = 95 g/mol
- H2O = 18 g/mol
- Fe = 56 g/mol
Formula units = mass/molar mass × 6.02 × 10^23
The formula units in the substances are as follows:
- Br2 = 239.2/160 × 6.02 × 10^23 = 8.99 × 10^23 formula units
- MgCl2 = 239.2/95 × 6.02 × 10^23 = 1.51 × 10^24 formula units
- H2O = 239.2/18 × 6.02 × 10^23 = 2.57 × 10^24 formula units
- Fe = 239.2/56 × 6.02 × 10^23 = 2.57 × 10^24 formula units
In conclusion, the number of formula units is derived from the moles and Avogadro number.
Learn more about formula units at: brainly.com/question/24529075
#SPJ1