1) Force = m*a = 1.00 g * (1kg / 1000 g) * 225 m/s^2 = 0.225 N
2) Charge
Force = K (charge)^2 /(distance)^2 => charge = √ [Force * distance^2 / k]
k = 9.00 * 10^9 N*m^2 / C^2
charge = √ [0.225 N * (0.02 m)^2 / 9.00* 10^9 N*m^2 / C^2 ]
charge = 0.0000001 C = 0.0001 mili C
Answer:
distance cover is = 102.53 m
Explanation:
Given data:
speed of object is 17.1 m/s


from equation of motion we know that

where d_1 is distance covered in time t1
so
=


where d_2 is distance covered in time t2


distance cover is = 213.31 - 110.78 = 102.53 m
Answer:
9ms^2
Explanation:
since ,Force=mass*acceleration
then, acceleration=force/mass
and, Force=90N
Mass=10pound
therefore, acceleration=90/10
=9ms^2
Answer:
<em>Force of gravity may not affect a pendulum during its equilibrium state</em>. But the gravity can affect the pendulum when a force occurs in any direction of the bob connected to the cord that makes a swing sideways. The gravity of pendulum never stops, it always accelerates. So the gravity affects the pendulum acceleration and speed.
<em>Similarly the tension in the cord will not affect the pendulum</em><em> </em>but if change in the length of the pendulum while keeping other factors constant changes the length of the period of pendulum. longer pendulum swings with lower frequency than shorter pendulums.