Answer:
The average death rate for this type of event is closest to 350 people per event.
Explanation:
Between the years 2048 and 2057
Is 10 years. Since there is only one chance of event between these years, there is no point to consider it.
The total number of events = 2940 chances.
average death rate per event = total number of dead people divided by total number of events of occurrence.
1000000/2940 = 340.134
The average death rate for this type of event is therefore closest to 350 people per event
Yes for an object moving on a horizontal plane, R = mg (where mg = weight). therefore, for an object moving on a horizontal plane: F = μmg
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.
The answer & explanation for this question is given in the attachment below.
Work is done. work=forcexdisplacement. the ice skater glides 2 meters (displacement), so yes.