Find the magnitude of the resultant force and the angle it makes with the positive x-axis. (Let a = 200 N and b = 400 N. Round y
our answers to one decimal place.)
1 answer:
Answer: R = 346.4N and angle 30° to the horizontal negative axis
Explanation:
To find the resultant force, we need to sum up the forces on the vertical and horizontal axis.
For the horizontal axis;
Rx = -b + acos60
Rx = -400N +200cos60
Rx = -400N +100N
Rx = -300N
For the vertical axis;
Ry = asin60 = 200sin60
Ry = 173.2N
The resultant force R can be given as;
R = √(Rx^2 +Ry^2)
R = √((-300)^2 + 173.2^2)
R = 346.4N
Angle z can be written as
Tanz = Ry/Rx
z = taninverse (Ry/Rx)
z = taninverse (173.2/300)
z = 30°
You might be interested in
The solution for this problem is:
r = [(2.90 + 0.0900t²) i - 0.0150t³ j] m/s²
this is for t in seconds and r in meters
v = dr/dt = [0.180t i - 0.0450t² j] m/s²
tan(-36.0º) = -0.0450t² / 0.180t
0.7265 = 0.25t
t = 2.91 s is the velocity vector of the insect
Answer:
c) lifespan
Explanation:
hope it's helpful for you ☺️
Answer:
Explanation:
Given
Two masses
and
is released and there is tension T in the string
Suppose a is the acceleration of the system
Therefore from Diagram
For 

------1
for m_2 body

-------2
From above two Equation it is said that Tension is greater than m_1g and less than m_2g

There relationship can be the same in a way because both of those slopes can increase