Answer:
Solution
λ=v/n
Here, v=344 m s−1
n=22 MHz =22×106 Hz
λ=344/22×106=15.64×10−6m=15.64μm.
Answer:
hmax=81ft
Explanation:
Maximum height of the object is the highest vertical position along its trajectory.
The vertical velocity is equal to 0 (Vy = 0)

we isolate th (needed to reach the maximum height hmax)

The formula describing vertical distance is:

So, given y = hmax and t = th, we can join those two equations together:


if we launch a projectile from some initial height h all you need to do is add this initial elevation


Answer:
True
Explanation:
Convection is a form of heat transfer that is predominantly common in fluids especially liquid and gas.
It occurs by the movement of a part of substance from one place to another based on density and temperature differences.
A typical convection cell is made up of a liquid that is heated. The liquid part close to the heat source becomes warmer and rises due to its low density. The part away from the heat source is more dense and begins to sink.
This analogy is commonly demonstrated in a boiling pot of water.
Omitting the 1 will not change the value of the number, but will change the units at the end of the problem
Answer:
(a) 1.093 rad/s^2
(b) 4.375 rad/s
(c) 8.744 rad/s
(d) 67.845 rad
Explanation:
initial angular velocity, ωo = 0
time, t = 8s
angular displacement, θ = 35 rad
(a) Let α be the angular acceleration.
Use second equation of motion for rotational motion

By substituting the values
35 = 0 + 0.5 x α x 8 x 8
α = 1.093 rad/s^2
(b) The average angular velocity is defined as the ratio of total angular displacement to the total time taken .
Average angular velocity = 35 / 8 = 4.375 rad/s
(c) Let ω be the instantaneous angular velocity at t = 8 s
Use first equation of motion for rotational motion
ω = ωo + αt
ω = 0 + 1.093 x 8 = 8.744 rad/s
(d) Let in next 5 seconds the angular displacement is θ.

By substituting the values
θ = 8.744 x 5 + 0.5 x 1.093 x 5 x 5
θ = 67.845 rad