Answer:
3.63 s
Explanation:
We can solve the problem by using the equivalent SUVAT equations for the angular motion.
To find the angular acceleration, we can use the following equation:

where
is the final angular speed
is the initial angular speed
is the angular distance covered
is the angular acceleration
Re-arranging the formula, we can find
:

Now we want to know the time the bit takes starting from rest to reach a speed of
. So, we can use the following equation:

where:
is the angular acceleration
is the final speed
is the initial speed
t is the time
Re-arranging the equation, we can find the time:

Answer:
Vprom = 0.00347[km/min]
Explanation:
We can calculate each of the average speeds and then perform the overall average between the two speeds.
V1 = 6/54
V1 = 0.111[km/min]
V2 = 1/16
V2 = 0.0625[km/min]
![V_{prom} = \frac{V_{1} + V_{2}}{2} \\V_{prom} = \frac{0.1111 + 0.0625}{2}\\V_{prom} = 0.00347 [km/min]](https://tex.z-dn.net/?f=V_%7Bprom%7D%20%3D%20%5Cfrac%7BV_%7B1%7D%20%2B%20V_%7B2%7D%7D%7B2%7D%20%20%5C%5CV_%7Bprom%7D%20%3D%20%5Cfrac%7B0.1111%20%2B%200.0625%7D%7B2%7D%5C%5CV_%7Bprom%7D%20%3D%200.00347%20%5Bkm%2Fmin%5D)
Experiments and fieldwork
Secrete enormous amounts of water, leading to diarrhea and a rapid loss of fluids and salts (electrolytes)