Answer:
The pressure is 
Explanation:
From the question we are told that
The initial pressure is 
The temperature is 
Let the first volume be
Then the final volume will be 
Generally for a diatomic gas

Here r is the radius of the molecules which is mathematically represented as

Where
are the molar specific heat of a gas at constant pressure and the molar specific heat of a gas at constant volume with values

=> 
=> 
=> ![P_2 = [\frac{1}{2} ]^{\frac{7}{5} } * 11.2](https://tex.z-dn.net/?f=P_2%20%20%3D%20%20%5B%5Cfrac%7B1%7D%7B2%7D%20%5D%5E%7B%5Cfrac%7B7%7D%7B5%7D%20%7D%20%2A%2011.2)
=> 
Answer:
The maximum height reached by the water is 117.55 m.
Explanation:
Given;
initial velocity of the water, u = 48 m/s
at maximum height the final velocity will be zero, v = 0
the water is going upwards, i.e in the negative direction of gravity, g = -9.8 m/s².
The maximum height reached by the water is calculated as follows;
v² = u² + 2gh
where;
h is the maximum height reached by the water
0 = u² + 2gh
0 = (48)² + ( 2 x -9.8 x h)
0 = 2304 - 19.6h
19.6h = 2304
h = 2304 / 19.6
h = 117.55 m
Therefore, the maximum height reached by the water is 117.55 m.
Answer:

Explanation:
given,
s = 400- 16 t²
we know,
Velocity of an object is defined as the change in displacement per unit change in time.
velocity an also be return as




Hence, instantaneous velocity function given by 
To calculate instantaneous velocity, you need to insert value of time.
ex, instantaneous velocity at t = 4 s
v = -32 x 4 = -128 m/s.
Answer
given,
wavelength of light in air = 700 nm
Wavelength of light in water = 530 nm
We know that speed of light changes when it moves from one medium to another.
And the frequency of the wavelength does not changes if the medium changes.
we also know that,
v = ν λ
From the above equation we can say that if frequency is constant so, with the change in velocity changes wavelength will also change.
Hence, wavelength is the property of the wave which determines color.
<span>The statement is TRUE. Water does have potential energy at the top of a slope. The reason why is that potential energy is energy possessed by a body based on its position relative to a zero point. In this case, water at the top of the slope is at an elevation above ground (zero point). The energy is not kinetic (moving) energy since the water is not moving.</span>