I think its A I hope this help thank you!!
Answer:
<em>J=36221 Kg.m/s</em>
Explanation:
<u>Impulse-Momentum Theorem</u>
These two magnitudes are related in the following way. Suppose an object is moving at a certain speed
and changes it to
. The impulse is numerically equivalent to the change of linear momentum. Let's recall the momentum is given by

The initial and final momentums are, respectively

The change of momentum is

It is numerically equal to the Impulse J


We are given

The impulse the car experiences during that time is

J=-36221 Kg.m/s
The magnitude of J is
J=36221 Kg.m/s
Answer:
8.8 cm
31.422 cm/s
Explanation:
m = Mass of block = 0.6 kg
k = Spring constant = 15 N/m
x = Compression of spring
v = Velocity of block
A = Amplitude
As the energy of the system is conserved we have

Amplitude of the oscillations is 8.8 cm
At x = 0.7 A
Again, as the energy of the system is conserved we have

The block's speed is 31.422 cm/s