Vertical-horizon.
If neither of them are it then it’s columns
Answer:
The correct answer is "False".
Explanation:
It is false that as carbon dioxide enters systemic blood, it causes more oxygen to dissociate from hemoglobin. Once an atom of oxygen binds to hemoglobin, hemoglobin change its shape and makes easier than a second and a third atom of oxygen binds towards it. This change in conformation makes no possible that carbon dioxide can cause that oxygen dissociates from hemoglobin.
mass = 12.2 kg
Explanation:
To find the mass we use the following formula (Newton's Second Law of Motion):
force = mass × acceleration
mass = force / acceleration
mass = 2.32 N / 0.19 m/s²
mass = 12.2 kg
Learn more about:
Newton's Second Law of Motion
brainly.com/question/834262
#learnwithBrainly
Answer:
Explanation:
We are asked to find the mass of a sample of metal. We are given temperatures, specific heat, and joules of heat, so we will use the following formula.
The heat added is 4500.0 Joules. The mass of the sample is unknown. The specific heat is 0.4494 Joules per gram degree Celsius. The difference in temperature is found by subtracting the initial temperature from the final temperature.
- ΔT= final temperature - initial temperature
The sample was heated <em>from </em> 58.8 degrees Celsius to 88.9 degrees Celsius.
- ΔT= 88.9 °C - 58.8 °C = 30.1 °C
Now we know three variables:
- Q= 4500.0 J
- c= 0.4494 J/g°C
- ΔT = 30.1 °C
Substitute these values into the formula.
Multiply on the right side of the equation. The units of degrees Celsius cancel.
We are solving for the mass, so we must isolate the variable m. It is being multiplied by 13.52694 Joules per gram. The inverse operation of multiplication is division, so we divide both sides by 13.52694 J/g
The units of Joules cancel.
The original measurements have 5,4, and 3 significant figures. Our answer must have the least number or 3. For the number we found, that is the ones place. The 6 in the tenth place tells us to round the 2 up to a 3.
The mass of the sample of metal is approximately <u>333 grams.</u>