Answer:
c = 0.528 J/g.°C
Explanation:
Given data:
Mass of titanium = 43.56 g
Heat absorbed = 0.476 KJ = 476 j
Initial temperature = 20.5°C
Final temperature = 41.2°C
Specific heat capacity = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 41.2°C - 20.5°C
ΔT = 20.7 °C
476 J = 43.56 g × c × 20.7 °C
476 J = 901.692 g.°C × c
c = 476 J / 901.692 g.°C
c = 0.528 J/g.°C
Answer:
The number of electrons in the outermost shell of an atom determines its reactivity. Noble gases have low reactivity because they have full electron shells. Halogens are highly reactive because they readily gain an electron to fill their outermost shell.
Explanation:
The representative elements are elements where the s and p orbitals are filling. The transition elements are elements where the d orbitals (groups 3–11 on the periodic table) are filling, and the inner transition metals are the elements where the f orbitals are filling.
KOH + H2SO4 —> K(+) + HSO4(-) + H2O
Or a total reaction
2 KOH + H2SO4 —> 2 K(+) + SO4(2-) + 2 H2O