Answer:
1. 67.2 kJ/mol
Explanation:
Using the derived expression from Arrhenius Equation

Given that:
time
= 8.3 days = (8.3 × 24 ) hours = 199.2 hours
time
= 10.6 hours
Temperature
= 0° C = (0+273 )K = 273 K
Temperature
= 30° C = (30+ 273) = 303 K
Rate = 8.314 J / mol
Since 
Then we can rewrite the above expression as:








The correct option is A.
An oxidation reaction is one in which a substance gives away electrons and becomes oxidized. In the equation given above, the chlorate ion undergoes oxidation reaction and gives away two chlorine ion.
Answer:
-66.88KJ/mol
Explanation:
It is possible to obtain the heat involved in a reaction using a calorimeter. Formula is:
q = -C×m×ΔT
<em>Where q is heat of reaction, C is specific heat capacity (4.18J/°Cg), m is mass of solution (100.0g) and ΔT is temperature change (23.40°C-22.60°C = 0.80°C)</em>
Replacing:
q = -4.18J/°Cg×100.0g×0.80°C
q = -334.4J
Now, in the reaction:
Ag⁺ + Cl⁻→ AgCl
<em>AgNO₃ as source of Ag⁺ and HCl as source of Cl⁻</em>
Moles that react are:
0.050L× (0.100mol /L) = 0.0050moles
If 0.0050 moles produce -334.4J. Heat of reaction is:
-334.4J / 0.0050moles = -66880J/mol = <em>-66.88KJ/mol</em>
Answer:
<h2>My My name: CORN CORNELIUS CORNWALL</h2><h2>My Age: 209374329 years old</h2><h2>Fav song : Baby by justin bieber</h2><h2>most legendary thing that i got : club penguin membership</h2>
Answer:
THE SOUND TRAVELS FASTER IN SOLIDS BECAUSE ITS MOLECULES ARE CLOSE TO EACH OTHER WHILE LIQUIDS MOLECULES ARE NOT TIGHT AS OF SOLID AND IN GAS THE MOLECULES ARE FREE