Answer:
This can be solved using Dalton's Law of Partial pressures. This law states that the total pressure exerted by a gas mixture is equal to the sum of the partial pressure of each gas in the mixture as if it exist alone in a container. In order to solve, we need the partial pressures of the gases given. Calculations are as follows:
Explanation:
P = 3.00 atm + 2.80 atm + 0.25 atm + 0.15 atm
P = 6.8 atm
3.5 atm = x (6.8 atm)
x = 0.51
Answer:
the general equation is: A + X → AX. Where a single compound on the reactant side breaks down into two or more products during a chemical change. The general equation is AX → A + X.
Explanation:
Answer:
It is reactive because it has to gain an electron to have a full outermost energy level.
Explanation:
The electron configuration of oxygen is 1s2,2s2 2p4.
Oxygen is in group six in the periodic table so it has six electrons in its valence shell. This means that it needs to gain two electrons to obey the octet rule and have a full outer shell of electrons (eight).
Answer:
trigonal pyramidal
Explanation:
In NF3, the nitrogen atom is sp3 hybridized. Now we must remember that according to the VSEPR theory, the number of electron pairs in the valence shell of the central atom in a molecule determines its shape.
Here, the nitrogen atom is the central atom and its outermost shell is surrounded by four electron pairs - one lone pair and three bond pairs. This means that it has a tetrahedral electron pair geometry.
However, due to the lone pair, the three fluorine atoms are arranged in a trigonal pyramidal geometry. Hence the correct shape of the molecule is trigonal pyramidal.
Melting (solid to liquid)