The balanced reaction is
3Na3PO4 + 2CuSO4 ------> 3Na2SO4 + Cu3(PO4)2
To balance this reaction of double displacement, we see first that this reaction maintain the valence numbers of every atom.
Then, to have the same value of Na in the two sides of the reaction we multiply for the number of the other side. So,
(Na3PO4)x 2
(Na2SO4)x3
As we can see either, we need to balance PO4 cause there are two molecules of this in the reactant side, so we have two molecules of PO4 in the product either.
Then we get
3Na3PO4 + 2CuSO4 ------> 3Na2SO4 + Cu3(PO4)2
To probe that balance was correct, you can verify that the charges are exactly the opposite.
Answer:
1) Increase
2) Decreases
3) increases
4) Increase
Explanation:
These questions can only be answered by considering the principle which states that, "When a constraint such as a change in concentration, pressure or volume is imposed on a reaction system in equilibrium. The system will readjust itself in order to annul the constraint."
Now, if more reactants are added, the equilibrium position will shift towards the right, If more products are added, the equilibrium position will shift to the left.
Similarly, the removal of H2S causes the O2 concentration to increase since the equilibrium position now shifts to the left.
Also, addition of O2 causes H2S to be removed as the equilibrium moves to the right.
Answer:
3.75 moles
Explanation:
The chemical equation is 2CH₃OH + 3O₂ -> 2CO₂ + 4H₂O
2 moles of CH₃OH are burned by 3 moles of O₂
For 2.5 moles of CH₃OH are burned by x moles of O₂
Let's solve for x :
2*x=2.5*3 => 2*x=7.5 => x=3.75 moles of O₂ are needed to burn 2.5 moles of CH₃OH