Answer: B. II and III only
Explanation:
Let’s begin by explianing what energy is: the ability of matter to produce work in the form of movement, light, heat, among others. In this sense, there are several types of energy, but we will talk especifically in this case about <u>kinetic energy</u> and <u>potential energy</u>.
<u>Kinetic energy </u>is the energy an object or body has due to its movement and depends on the mass and velocity of the object or body.
To understande it better: If an object is at rest, its velocity is null and it does not have kinetic energy, however, if the object is moving, then it has kinetic energy.
On the other hand, <u>Potential energy</u> is known as <em>“stored energy”</em> that has the potential to be converted into energy of motion (kinetic energy) or another type of energy (thermal energy, for example). In addition, this energy is related to the work done when a certain force moves an object or body from its natural resting state along a distance to a new position.
So, according to this, Kinetic energy can be transformed into potential energy and Potential energy can be transformed into kinetic energy or any other type of energy. Hence, options II and III are correct.
(a) Let
be the maximum linear speed with which the ball can move in a circle without breaking the cord. Its centripetal/radial acceleration has magnitude

where
is the radius of the circle.
The tension in the cord is what makes the ball move in its plane. By Newton's second law, the maximum net force on it is

so that

Solve for
:

(b) The net force equation in part (a) leads us to the relation

so that
is directly proportional to the square root of
. As the radius
increases, the maximum linear speed
will also increase, so the cord is less likely to break if we keep up the same speed.
Answer:

Explanation:
Given that,
Wavelength, 
We need to find the frequency of the violet light.
We know that the relation between frequency and wavelength is given by :

So, the frequency of violet light is
.
The frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
To find the answer, we need to know about the time of flight and range of projectile motion.
<h3>What's the expression of range of a projectile motion?</h3>
- Range = U²× sin(2θ)/g
- U= initial velocity, θ= angle of projectile and g= acceleration due to gravity
- U=√{Range×g/sin(2θ)}
- Here, range= 2.20m, = 36.5°
- U= √{2.20×9.8/sin(73)}
U= √{2.20×9.8/sin(73)} = 22.5m/s
<h3>What's the expression of time of flight in projectile motion?</h3>
- Time of flight= (2×U×sinθ)/g
- So, T= (2×22.5×sin36.5°)/9.8
= 2.73 s
Thus, we can conclude that the frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
Learn more about the range and time period of projectile motion here:
brainly.com/question/24136952
#SPJ1