Answer:

Explanation:
First of all let's define the specific molar heat capacity.
(1)
Where:
Q is the released heat by the system
n is the number of moles
ΔT is the difference of temperature of the system
Now, we can find n with the molar mass (M) the mass of the compound (m).
Using (1) we have:


I hope it helps!
<h3>
Answer:</h3>
117.6 Joules
<h3>
Explanation:</h3>
<u>We are given;</u>
- Force of the dog is 24 N
- Distance upward is 4.9 m
We are required to calculate the work done
- Work done is the product of force and distance
- That is; Work done = Force × distance
- It is measured in Joules.
In this case;
Force applied is equivalent to the weight of the dog.
Work done = 24 N × 4.9 m
= 117.6 Joules
Hence, the work done in lifting the dog is 117.6 Joules
Heat engines are less than 100% efficient because absolute zero cannot be reached
Answer:
Explanation:
kinetic energy required = 1.80 MeV
= 1.8 x 10⁶ x 1.6 x 10⁻¹⁹ J
= 2.88 x 10⁻¹³ J
If v be the velocity of proton
1/2 x mass of proton x v² = 2.88 x 10⁻¹³
= .5 x 1.67 x 10⁻²⁷ x v² = 2.88 x 10⁻¹³
v² = 3.45 x 10¹⁴
v = 1.86 x 10⁷ m /s
If V be the potential difference required
V x e = kinetic energy . where e is charge on proton .
V x 1.6 x 10⁻¹⁹ = 2.88 x 10⁻¹³
V = 1.8 x 10⁶ volt .