Answer:
False only direction not weight.
Explanation:
Answer:
The gravitational potential energy between two particles, if the distance between them is halved, is multiplied by 4 (option c).
Explanation:
The gravitational force is the force of mutual attraction that two objects with mass experience.
The Law of Universal Gravitation enunciated by Newton says that every material particle attracts any other material particle with a force directly proportional to the product of their masses and inversely proportional to the square of the distance that separates them. Mathematically this is expressed as:

where m1 and m2 are the masses of the objects, r the distance between them and G a universal constant that receives the name of constant of gravitation.
If the distance between two particles is reduced by half, then, where F' is the new value of the gravitational force:




F'=4*F
<u><em>
The gravitational potential energy between two particles, if the distance between them is halved, is multiplied by 4 (option c).</em></u>
Answer:
Newton's second law of motion can be formally stated as follows: The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
Answer:
i need some more coins LMAI
To solve the problem, it is necessary the concepts related to the definition of area in a sphere, and the proportionality of the counts per second between the two distances.
The area with a certain radius and the number of counts per second is proportional to another with a greater or lesser radius, in other words,


M,m = Counts per second
Our radios are given by



Therefore replacing we have that,






Therefore the number of counts expect at a distance of 20 cm is 19.66cps