The temperature at which the sample of liquid turns to gas at 135 °C is termed as boiling point.
Answer: Option A
<u>Explanation:
</u>
The observation of conversion of liquid to gas indicates that there is occurrence of change in the state of matter. The inter-conversion from one state to another can be done by either varying the temperature or by varying the pressure.
In this case, the liquid on heating gets converted to gaseous state after attaining a particular temperature say 135 °C. So, this process of conversion from liquid to gaseous state on heating is termed as boiling.
The temperature at which a liquid converts to gas is termed as the boiling point of that liquid.
Im sorry may you please retake the picture then i will answer
see i was trying to figure out the answer but i didn't understand it so i took the time to research and work it out but i still didn't understand i found one that was close to it and i got the same one as the other person which is D but idk if it is that type of question if it is than it is d if not then idk
Answer:
(a) T = 10 s
(b) f = 0.1 Hz
(c) λ = 32 m
(d) v = 3.2 m/s
(e) Insufficient data
Explanation:
(a)
Time period is defined as the time interval required for one wave to pass. Therefore, the time period can be given as:
T = Period = Time Taken/No. of Waves
T = 50 s/5
<u>T = 10 s</u>
<u></u>
(b)
Frequency is the reciprocal of time period:
f = frequency = 1/T
f = 1/10 s
<u>f = 0.1 Hz</u>
<u></u>
(c)
Wavelength is the distance between two consecutive crests or troughs:
<u>λ = Wavelength = 32 m</u>
<u></u>
(d)
Speed of wave is given by the following formula:
Speed = v = fλ
v = (0.1 Hz)(32 m)
v = 3.2 m/s
(e)
Amplitude cannot be found with given data.