1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elden [556K]
3 years ago
7

what is the equation of a line that has a slope of -5 and passes through the point (0,2) a)y= -5x b)y= -5x + 2 c)y = 2x - 5

Mathematics
1 answer:
Free_Kalibri [48]3 years ago
5 0

Answer:

y=-5x+2

Step-by-step explanation:

desmos

also -5= the slope and 2 was the y intercept aka B you had all Pieces

You might be interested in
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
If the composition of two functions is:
NARA [144]

9514 1404 393

Answer:

  x ≠ 3

Step-by-step explanation:

In any case, the domain is restricted to values of the variable for which the function is defined. The value 1/0 is not defined, so the variable cannot allow the denominator to be zero. The denominator x-3 will be zero for x=3, so that value of the variable cannot be in the domain.

The domain is all real numbers except x=3.

_____

<em>Additional comments</em>

It is useful to become familiar with the domains of different functions. As we saw above, the reciprocal of 0 is undefined. The square root of a negative number is undefined. The log of a non-positive number is undefined. Trig functions are defined everywhere, but their inverse functions are not. Polynomial functions are defined everywhere, but ratios of polynomials have the same restriction on denominators that we see above.

8 0
3 years ago
Help with this one please 20 points brain lest and a thanks on your page honestly just giving points away
Kitty [74]
The answer is C.

It has a negative slope (-40) and a y-intercept at 200.
3 0
4 years ago
How do I rotate a figure 90 degrees clockwise
cricket20 [7]

Step-by-step explanation:

You have to have tracing paper or patty paper (cause that's what my teacher uses). Next you draw the figure along with the x and y-axis on it as well. Then you mark the x and y-axis and rotate the paper 90 degrees clockwise. Lastly if the x-axis is on the y-axis, mark it as the y-axis and if the y-axis is on the x-axis, also mark it as the x-axis.

I hope this helped :)

5 0
3 years ago
Suppose that X has a discrete uniform distribution on the integers 0 through 9. Determine the mean, variance, and standard devia
Anna35 [415]
With 10 integers available, X has PMF

\mathbb P(X=x)=\begin{cases}\dfrac1{10}&\text{for }0\le x\le9,x\in\mathbb Z\\\\0&\text{otherwise}\end{cases}

We're interested in the statistics of the new random variable Y=5X. To do this, we need to know the PMF for Y. This isn't too hard to find.

\mathbb P(Y=y)=\mathbb P(5X=y)=\mathbb P\left(X=\dfrac y5\right)

Since the PMF for X gives a value of \dfrac1{10} whenever x is an integer between 0 and 9, it follows that \dfrac y5 must also be an integer for the PMF to give the identical value of \dfrac1{10}. This means

\mathbb P(Y=y)=\begin{cases}\dfrac1{10}&\text{for }y\in\{0,5,\ldots,45\}\\\\0&\text{otherwise}\end{cases}

Now the mean (expectation) is

\mathbb E(Y)=\displaystyle\sum_yy\mathbb P(Y=y)=\frac1{10}\sum_{y\in\{0,\ldots,45\}}y
\mathbb E(Y)=\dfrac{225}{10}=22.5

The variance would be

\mathbb V(X)=\mathbb E(X^2)-\mathbb E(X)^2
\mathbb V(X)=\displaystyle\sum_yy^2\mathbb P(Y=y)-\mathbb E(Y)^2
\mathbb V(X)=\displaystyle\frac1{10}\sum_{y\in\{0,\ldots,45\}}y^2-\left(\frac{225}{10}\right)^2
\mathbb V(X)=\dfrac{7125}{10}-\dfrac{50625}{100}=206.25

The standard deviation is the square root of the variance, so you have

\sqrt{\mathbb V(X)}=\sqrt{206.25}\approx14.3614
8 0
3 years ago
Other questions:
  • If you invest $1000 at an interest rate of 2.5% compounded continuously, calculate how many years. How long will it take for you
    8·1 answer
  • a sphere is circumscribed about an 8-inch by 8-inch by 8-inch cube. Find the volume to the nearest cubic inch.
    8·1 answer
  • The volume of one cloud, in cubic kilometers, grows according to the expression 43x – 1, where x is time in hours. Another cloud
    8·1 answer
  • Suppose that y varies directly with x and y= 5 when x= 6. What is y when x= 5?
    5·1 answer
  • 7 What is the solution set for - 4x -10 &lt; 2?
    7·1 answer
  • Any other answers to this question?
    7·2 answers
  • A Gallup poll of 1236 adults showed that​ 12% of the respondents believe that it is bad luck to walk under a ladder. Consider th
    9·1 answer
  • If value of a+b=7and ab=12then find the value of a and b
    12·2 answers
  • I'll give brainliest:)
    6·2 answers
  • A chemist has three different acid solutions.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!