Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:


From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.
The exit temperature is 586.18K and compressor input power is 14973.53kW
Data;
- Mass = 50kg/s
- T = 288.2K
- P1 = 1atm
- P2 = 12 atm
<h3>Exit Temperature </h3>
The exit temperature of the gas can be calculated isentropically as

Let's substitute the values into the formula

The exit temperature is 586.18K
<h3>The Compressor input power</h3>
The compressor input power is calculated as

The compressor input power is 14973.53kW
Learn more on exit temperature and compressor input power here;
brainly.com/question/16699941
brainly.com/question/10121263
Answer:
The heat transfer q = 18.32W
Explanation:
In this question, we are asked to calculate the heat entering the tube and also evaluate properties at T =400K
Please check attachment for complete solution and step by step explanation
Answer:
Yes
Explanation:
If the Ajax representative fails to correct the previous statement this can cause misrepresentation.