Answer:
Vf = 29.4 m/s
h = 44.1 m
Explanation:
Data:
- Initial Velocity (Vo) = 0 m/s
- Gravity (g) = 9.8 m/s²
- Time (t) = 3 s
- Final Velocity (Vf) = ?
- Height (h) = ?
==================================================================
Final Velocity
Use formula:
Replace:
Multiply:
==================================================================
Height
Use formula:
Replace:
Multiply time squared:
Simplify the s², and multiply in the numerator:
It divides:
What is the velocity when falling to the ground?
The final velocity is <u>29.4 meters per seconds.</u>
How high is the building?
The height of the building is <u>44.1 meters.</u>
Answer:
The charge on each plate is 0.0048 nC
Explanation:
for the distance between the plates d and given the area of plates, A, and ε = 8.85×10^-12 C^2/N.m^2, the capacitance of the plates is given by:
C = (A×ε)/d
=[(0.2304×10^-2)(0.2304×10^-2)×(8.85×10^-12))/(0.5974×10^-3)
= 7.86×10^-14 F
then if the plates are connected to a battery of voltage V = 61 V, the charge on the plates is given by:
q = C×V
= (7.86×10^-14)×(61)
= 4.80×10^-14 C
≈ 0.0048 nC
Therefore, the charge on each plate is 0.0048 nC.
Answer:
1.08 m/s
Explanation:
This can be solved with two steps, first we need to find the time taken to fall 9.5 m, then we can divide the horizontal distance covered with time taken to calculate the velocity.
Time taken to fall 9.5 m
vertical acceleration = a = 9.8 m/s^2.
vertical velocity = 0, (since there is only horizontal component for velocity,
)
distance traveled s = 9.5 m.
Substituting these values in the equation



⇒ t= 1.392 sec
Velocity needed
We know the time taken (1.392 s) to travel 1.5 m,
So velocity = 1.5 m / 1.392 s = 1.08 m/s
hence velocity of the diver must be at least 1.08 m/s
Answer:
c. from south to north
Explanation:
since we know that:
F = qv×B
where F is the force and in this case is pointed upward
where v is the velocity due east
the field must be due north by the right hand rule
Therefore, near the equator the magnetic field lines of the earth are directed north from south