This would be called the "Escape Velocity "
Answer:
Distance covered to top of the hill was : 1.755 km
Explanation:
Initial velocity = 35 km/hr
Acceleration = 2.0 km/hr²
Time taken to accelerate = 3 minutes = 3/60 hours = 1/20 hours
Formula for acceleration : a = Δv /t
v-u/t ---where u is initial velocity , v is final velocity and t is time taken for acceleration
v- 35 / 0.05 = 2
v = 35.10 km/h
Formula for distance is product of speed and time
Distance covered = 35.10 * 0.05 = 1.755 km
Due to its polarity and hydrogen bonding water can absorb heat without a significant temperature change.. The high specific heat of water helps regulate the rate at which air changes temperature, which is why the temperature change between seasons is gradual instead of sudden, especially near the oceans.
Answer:
7.50 m/s^2
Explanation:
The period of a pendulum is given by:
(1)
where
L = 0.600 m is the length of the pendulum
g = ? is the acceleration due to gravity
In this problem, we can find the period T. In fact, the frequency is equal to the number of oscillations per second, so:

And the period is the reciprocal of the frequency:

And by using this into eq.(1), we can find the value of g:

Answer:
node
Explanation:
on the graph node is higher than antinode
so it can get or hear loud sounds faster