Answer:
The density is 
Explanation:
From the question we are told that
The weight in air is 
The weight in water is 
The weight in a unknown liquid is 
Now according to Archimedes principle the weight of the object in water is mathematically represented as

Where
is he mass of the water displaced
substituting value


Now according to Archimedes principle the weight of the object in unknown is mathematically represented as

Where
is he mass of the unknown liquid displaced
substituting value


dividing equation 2 by equation 1


=> 
Now since the volume of water and liquid displaced are the same then

This because

So if volume is constant
mass = constant * density
Where
is the density of the liquid
and
is the density of water which is a constant with a value 
So


<span>The rate of conductivity is different among different substances, like aluminum, steel, and copper. Aluminum conducts heat the fastest at 910 j/kgaac. Steel is next and conducts heat at 450 j/kgaac. Copper conducts heat the slowest at 390 j/kgaac.</span>
Answer:
A
Explanation:
Dennis, 60 feet in 0.5 seconds
Answer:
the answer to your question is 4 cm long
Explanation:
Answer:
The terminal velocity of the diver is 115 m/s = 414 km/hr
Explanation:
At terminal velocity,
Fnet = mg - Fd = 0
Drag force, Fd = cρAv²/2
mg = cρAv²/2
Terminal Velocity of a body falling through a fluid as in a diver falling through air is given by
v = √(2mg/ρcA)
where m = mass of body falling through fluid = 80 kg
g = acceleration due to gravity = 9.8 m/s²
ρ = density fluid, density of air, as obtained from literature = 1.21 kg/m³
c = coefficient of drag friction of diver falling through air, as obtained from literature = 0.7
A = the area of the diver facing the fluid = 0.14 m²
v = √(2mg/ρcA) = √((2 × 80 × 9.8)/(1.21 × 0.7 × 0.14)) = 115 m/s = 115 × (3600/1000) km/hr = 414 km/hr