Newton's Third Law states that for every action there is an opposite and equal reaction:
If the gravitational force of the Earth on the Moon is F then the gravitational force of the Moon on the Earth is also F
Answer:
C. 5.6 × 10^11 N/C
Explanation:
The electric field
at a distance
from a charge
is given by

where
is the coulomb's constant.
Now, in our case

;
therefore,


which is choice C from the options given<em> (at least it resembles it).</em>
Answer:
A) Out of the page.
Explanation:
Right-hand rule points the direction of the magnetic field at any point.
<u>Top wire</u>: Current is to the left. Point your thumb to the left and curl your other fingers around the wire. The tips of the four fingers points the direction of the field at that point. In this case, out of the page.
<u>Bottom wire</u>: Current is to the right. Point your thumb to the right and curl your other fingers around the wire. The tips of the four finger points out of the page again.
So, the total field produced by both wires is directed out of the page.
Another method to figure out the direction is the mathematical method.
Use the B-field formula:

The cross product between the direction of the current and the target position gives the direction of the B-field. If the left is -x direction and downwards is the -y direction, then
for the top wire.
for the bottom wire.
Answer:
Inter Quartile Range
Explanation:
Quartile is a positional statistical average, which divided the data into 4 equal halves.
Q1 (Lower Quartile) has 25% data below it, 75% above it. Q3 (Upper Quartile) has 75% data below it, 25% above it.
Interquartile range is the measure used to calculate how far the lower & upper quartiles are.
Answer:
Part 1) Voltage in secondary windings is 61.08 Volts
Part 2) Current in secondary windings is 0.53 Amperes
Explanation:
The potential developed in the primary and secondary winding of a transformer are related as

where
Np no of turns in primary coil
Ns no of turns in secondary coil
Vp Voltage of turns in primary coil
Vs Voltage of turns in secondary coil
Applying values in the formula we get

Part 2)
Using Ohm's law the current is given by
