Answer:
A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.
Explanation:
please mark me as the brainliest please please
Answer:
Energy = 1.38*10^13 J/mol
Explanation:
Total number of proton in F-19 = 9
Total number of neutron in F-19 = 10
Expected Mass of F-19
= 9*1.007 + 10*1.008 = 19.152 u
Actual mass of F-19 = 18.998 u
Energy of one particle of F-19 = 931.5*Δm = 931.5*(19.152-18.998)
= 143.234 MeV
Energy of one mole of F-19 = 143.234*10^6*1.6*10^-19*6.022*10^23
= 1.38*10^13 J/mol
This is a list of well known characteristics of acids:
1) acids increase the concentration of hydronum ions ([H3O+]) when dissolved in water
2) acids taste sour
3) many are corrosive (the higher the acidity the higher the corrosive property)
4) when acids react with some metals produce hydrogen gas
5) acids conduct electricity (due to the presence of hydronium ions)
6) acids neutralize bases
7) acids combine with bases to produce water and salt
8) acids lower the pH of solutions.
They do not feel sticky to the touch. Bases fell slippery but there is not that property of sticky sensation about acids, although some highly concentrated strong acids have high viscosity. You cannot touch highly concentrated strong acids.
We will apply the conservation of linear momentum to answer this question.
Whenever there is an interaction between any number of objects, the total momentum before is the same as the total momentum after. For simplicity's sake we mostly use this equation to keep track of the momenta of two objects before and after a collision:
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
Note that v₁ and v₁' is the velocity of m₁ before and after the collision.
Let's choose m₁ and v₁ to represent the bullet's mass and velocity.
m₂ and v₂ represents the wood block's mass and velocity.
The bullet and wood will stick together after the collision, so their final velocities will be the same. v₁' = v₂'. We can simplify the equation by replacing these terms with a single term v'
m₁v₁ + m₂v₂ = m₁v' + m₂v'
m₁v₁ + m₂v₂ = (m₁+m₂)v'
Let's assume the wood block is initially at rest, so v₂ is 0. We can use this to further simplify the equation.
m₁v₁ = (m₁+m₂)v'
Here are the given values:
m₁ = 0.005kg
v₁ = 500m/s
m₂ = 5kg
Plug in the values and solve for v'
0.005×500 = (0.005+5)v'
v' = 0.4995m/s
v' ≅ 0.5m/s