Answer:
No, the farmer is not able to move the mule.
Explanation:
Mass =100 kg
Force=F=800 N
The coefficient between the mule and the ground=

Static friction force,f=
Normal force=N=mg
Static friction force,f=
Using 
F<f
Static friction force is greater than applied force.
Therefore , the farmer is not able to move the mule.
Answer:
Explanation:
A plane flies due north (90° from east) with a velocity of 100 km/h for 2 hours.
With no wind, it will be 100*2 = 200 km north of its starting point.
But a steady wind blows southeast at 30 km/h at an angle of 315° from due east.
So the wind itself will blow the plane 30*2 = 60km at an angle of 315° from due east.
That is the same as 60*cos315° = 42.43km due east and 60*sin315° = -42.43km north.
Combining, the plane is at 42.43km due east and 200-42.43 = 157.57km due north from its starting point.
Answer:
B is the answer. Correct me if I'm wrong
Answer:
Explanation:
First, It's important to remember F = ma, and in this problem m = 13.3 kg
This can be reduced to a simple system of equations problem. Now if they are both going the same way then we add them, while if they are going the opposite way we subtract them. So let's call them F1 and F2, with F1 arger than F2. Now, When we add them together F1+F2 = (.723 m/s^2)*13.3kg and then when we subtract them, and have the larger one pushing toward the east, let's call F1 the larger one, F1-F2 = (.493 m/s^2)*13.3kg.
Can you solve this system of equations seeing them like this, or do you need more help?
Answer:
The current decreases.
Explanation:
Current and resistance are inversely proportional. The equation connecting current, resistance and voltage is
, where V is voltage, I is current and R is resistance.
Rearranging this equation, you get:
and

If the value of voltage in both equations remains constant, and the value of R decreases, the value of I will increase. Conversely, if in the second equation
, the value of V remains constant the value of I decreases, then the value of R, resistance will increase.
Thus, it can be seen that the current will decrease as resistance increases and vice versa.