Scientists conduct experiments in order to prove a theory or a prediction they have or contradict it, so that then they can write down their results to study them.

Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
Answer:

Explanation:
<u>Given Data:</u>
Mass = m = 4 kg
Acceleration due to gravity = g = 9.8 m/s²
Height = h = 1 m
<u>Required:</u>
Potential Energy = P.E. = ?
<u>Formula:</u>
P.E. = mgh
<u>Solution:</u>
P.E. = (4)(9.8)(1)
P.E. = 39.2 Joules
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Answer: The ball (option A)
Explanation: change in momentum is defined by the formulae m(v - u) where m = mass of object, v = final velocity and u = initial velocity.
For the ball, it hits the ground and bounces back with the same speed, that's final velocity equals initials (v = - u)
Change in momentum = m( -u- u) = m(-2u) = m(-2u) = -2mu
For the clay, it final velocity is zero since it sticks to the floor, hence (v =0)
m(v - u) = m(0 - u) = - mu.
-2mu (change in momentum from the ball) is greater than - mu ( change in momentum of clay)
Answer:
Explanation:
Person A's velocity relative to the train is 0. Therefore, the pitch of the horn will not change.