Answer:
The answer to your question is simultaneous. Hope it helps!
Answer:

Explanation:
Hello!
In this case, since the pH of the given metal is 10.15, we can compute the pOH as shown below:

Now, we compute the concentration of hydroxyl ions in solution:
![[OH^-]=10^{-pOH}=10^{-3.95}=1.41x10^{-4}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D%3D10%5E%7B-3.95%7D%3D1.41x10%5E%7B-4%7DM)
Now, since this hydroxide has the form MOH, we infer the concentration of OH- equals the concentration of M^+ at equilibrium, assuming the following ionization reaction:

Whose equilibrium expression is:
![Ksp=[M^+][OH^-]](https://tex.z-dn.net/?f=Ksp%3D%5BM%5E%2B%5D%5BOH%5E-%5D)
Therefore, the Ksp for the saturated solution turns out:

Best regards!
Answer:
Environment A is not undergoing succession, and Environment B is.
Explanation:
Ecological succession is a gradual process in which ecosystems significantly change over time. Ecological succession is a term used by scientists to describe the change in the structure of a community of different species, or ecosystem. This concept of ecological succession stems from a desire to understand the patterns of change in large and complex ecosystems like forests and how they can exist in places known to be recently formed, such as volcanic islands.
In environment A, the ecosystem is not really changing, organisms are merely returning to their natural habitat. It does not represent any change in the ecosystem.
In environment B, the original ecosystem has become grossly modified, first by the appearance of lichen and mosses and subsequently by grasses shrubs and animals. These sequence of events correlate well with the idea of ecological succession presented in the opening paragraph hence environment B is undergoing ecological succession.
Answer:
it dissolves or disintegrates
Explanation:
<span>the elements in groups1a, 2a, 3a have positive charges according to their group numbers</span>