1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
3 years ago
8

(7x+14) (15x-4) solve for x (20 points

Mathematics
1 answer:
Misha Larkins [42]3 years ago
7 0

Answer:

The value of x .

7x-14= 15x

-14 =8x

x= -7/4

Step-by-step explanation:

sorry if im wrong

You might be interested in
Which of the following sequences of transformations maps △UVW onto △ABC?
vlabodo [156]

Answer:

segment VB

I will brb

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
in exercises 15-20 find the vector component of u along a and the vecomponent of u orthogonal to a u=(2,1,1,2) a=(4,-4,2,-2)
Nimfa-mama [501]

Answer:

The component of \vec u orthogonal to \vec a is \vec u_{\perp\,\vec a} = \left(\frac{9}{5},\frac{6}{5},\frac{9}{10},\frac{21}{10}\right).

Step-by-step explanation:

Let \vec u and \vec a, from Linear Algebra we get that component of \vec u parallel to \vec a by using this formula:

\vec u_{\parallel \,\vec a} = \frac{\vec u \bullet\vec a}{\|\vec a\|^{2}} \cdot \vec a (Eq. 1)

Where \|\vec a\| is the norm of \vec a, which is equal to \|\vec a\| = \sqrt{\vec a\bullet \vec a}. (Eq. 2)

If we know that \vec u =(2,1,1,2) and \vec a=(4,-4,2,-2), then we get that vector component of \vec u parallel to \vec a is:

\vec u_{\parallel\,\vec a} = \left[\frac{(2)\cdot (4)+(1)\cdot (-4)+(1)\cdot (2)+(2)\cdot (-2)}{4^{2}+(-4)^{2}+2^{2}+(-2)^{2}} \right]\cdot (4,-4,2,-2)

\vec u_{\parallel\,\vec a} =\frac{1}{20}\cdot (4,-4,2,-2)

\vec u_{\parallel\,\vec a} =\left(\frac{1}{5},-\frac{1}{5},\frac{1}{10},-\frac{1}{10} \right)

Lastly, we find the vector component of \vec u orthogonal to \vec a by applying this vector sum identity:

\vec  u_{\perp\,\vec a} = \vec u - \vec u_{\parallel\,\vec a} (Eq. 3)

If we get that \vec u =(2,1,1,2) and \vec u_{\parallel\,\vec a} =\left(\frac{1}{5},-\frac{1}{5},\frac{1}{10},-\frac{1}{10} \right), the vector component of \vec u is:

\vec u_{\perp\,\vec a} = (2,1,1,2)-\left(\frac{1}{5},-\frac{1}{5},\frac{1}{10},-\frac{1}{10}    \right)

\vec u_{\perp\,\vec a} = \left(\frac{9}{5},\frac{6}{5},\frac{9}{10},\frac{21}{10}\right)

The component of \vec u orthogonal to \vec a is \vec u_{\perp\,\vec a} = \left(\frac{9}{5},\frac{6}{5},\frac{9}{10},\frac{21}{10}\right).

4 0
3 years ago
Find the circumference of the circle. Use 22/7 for pi.
11111nata11111 [884]

Answer:

44

Step-by-step explanation:

circumference = 2πr = 2*(22/7)*(14/2) = 44

8 0
2 years ago
Read 2 more answers
EXAMPLE 5 Find the maximum value of the function f(x, y, z) = x + 2y + 11z on the curve of intersection of the plane x − y + z =
Taya2010 [7]

Answer:

\displaystyle x= -\frac{10}{\sqrt{269}}\\\\\displaystyle y= \frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{23\sqrt{269}+269}{269}

<em>Maximum value of f=2.41</em>

Step-by-step explanation:

<u>Lagrange Multipliers</u>

It's a method to optimize (maximize or minimize) functions of more than one variable subject to equality restrictions.

Given a function of three variables f(x,y,z) and a restriction in the form of an equality g(x,y,z)=0, then we are interested in finding the values of x,y,z where both gradients are parallel, i.e.

\bigtriangledown  f=\lambda \bigtriangledown  g

for some scalar \lambda called the Lagrange multiplier.

For more than one restriction, say g(x,y,z)=0 and h(x,y,z)=0, the Lagrange condition is

\bigtriangledown  f=\lambda \bigtriangledown  g+\mu \bigtriangledown  h

The gradient of f is

\bigtriangledown  f=

Considering each variable as independent we have three equations right from the Lagrange condition, plus one for each restriction, to form a 5x5 system of equations in x,y,z,\lambda,\mu.

We have

f(x, y, z) = x + 2y + 11z\\g(x, y, z) = x - y + z -1=0\\h(x, y, z) = x^2 + y^2 -1= 0

Let's compute the partial derivatives

f_x=1\ ,f_y=2\ ,f_z=11\ \\g_x=1\ ,g_y=-1\ ,g_z=1\\h_x=2x\ ,h_y=2y\ ,h_z=0

The Lagrange condition leads to

1=\lambda (1)+\mu (2x)\\2=\lambda (-1)+\mu (2y)\\11=\lambda (1)+\mu (0)

Operating and simplifying

1=\lambda+2x\mu\\2=-\lambda +2y\mu \\\lambda=11

Replacing the value of \lambda in the two first equations, we get

1=11+2x\mu\\2=-11 +2y\mu

From the first equation

\displaystyle 2\mu=\frac{-10}{x}

Replacing into the second

\displaystyle 13=y\frac{-10}{x}

Or, equivalently

13x=-10y

Squaring

169x^2=100y^2

To solve, we use the restriction h

x^2 + y^2 = 1

Multiplying by 100

100x^2 + 100y^2 = 100

Replacing the above condition

100x^2 + 169x^2 = 100

Solving for x

\displaystyle x=\pm \frac{10}{\sqrt{269}}

We compute the values of y by solving

13x=-10y

\displaystyle y=-\frac{13x}{10}

For

\displaystyle x= \frac{10}{\sqrt{269}}

\displaystyle y= -\frac{13}{\sqrt{269}}

And for

\displaystyle x= -\frac{10}{\sqrt{269}}

\displaystyle y= \frac{13}{\sqrt{269}}

Finally, we get z using the other restriction

x - y + z = 1

Or:

z = 1-x+y

The first solution yields to

\displaystyle z = 1-\frac{10}{\sqrt{269}}-\frac{13}{\sqrt{269}}

\displaystyle z = \frac{-23\sqrt{269}+269}{269}

And the second solution gives us

\displaystyle z = 1+\frac{10}{\sqrt{269}}+\frac{13}{\sqrt{269}}

\displaystyle z = \frac{23\sqrt{269}+269}{269}

Complete first solution:

\displaystyle x= \frac{10}{\sqrt{269}}\\\\\displaystyle y= -\frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{-23\sqrt{269}+269}{269}

Replacing into f, we get

f(x,y,z)=-0.4

Complete second solution:

\displaystyle x= -\frac{10}{\sqrt{269}}\\\\\displaystyle y= \frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{23\sqrt{269}+269}{269}

Replacing into f, we get

f(x,y,z)=2.4

The second solution maximizes f to 2.4

5 0
2 years ago
The amount of milk that the bakery was a 75% decrease compared to last month. (it doesn’t show a last month)
Thepotemich [5.8K]
Did you do the math homework for math homework homework for math
3 0
2 years ago
Other questions:
  • What is the value of X. Triangles <br><br> 39 is one angle and 102 is the other angle
    15·2 answers
  • What are the real zeroes of x^3+ 6x^2- 9x - 54?
    7·2 answers
  • How to calculate the mode of this data?<br> 1.7 8.9 3 5.9 3.2 4.1 6.6 0.7
    5·1 answer
  • Answer these questions please
    8·2 answers
  • Bill has 2/3 of his pizza left from lunch. If he eats 3/7 more of the pizza, how much pizza is left?
    11·2 answers
  • The value of the expression -2 xy for x = -4.7 and y = 0.2 is _____.
    11·2 answers
  • The common ratio of a geometric sequence cannot be:<br> a) 3 b) 1<br> c) 2 d) 0
    12·1 answer
  • PLEASE HELP!!!
    10·1 answer
  • Solve the system of equations 4x + 3y = 3 and y = 2x + 6.
    6·1 answer
  • The school board of a large school district would like to raise taxes in the district to pay for new computers. To see if there
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!