The total momentum is unchanged according to the law of conservation of momentum. When the gun is fired, the bullet gains a high velocity forward (positive velocity), and that velocity multiplied by its mass is the momentum the bullet gains. Therefore, the gun must gain a momentum backwards to cancel out that momentum forward, so the gun recoils back with a negative velocity.
Answer:
Magnitude of force on wheel B is 4 N
Explanation:
Given that

For wheel A
m= 1 kg
d= 1 m,r= 0.5 m
F=1 N
We know that
T= F x r
T=1 x 0.5 N.m
T= 0.5 N.m
T= I α
Where I is the moment of inertia and α is the angular acceleration


T= I α
0.5= 0.25 α

For Wheel B
m= 1 kg
d= 2 m,r=1 m


Given that angular acceleration is same for both the wheel

T= I α
T= 1 x 2
T= 2 N.m
Lets force on wheel is F then
T = F x r
2 = F x 1
So F= 2 N
Magnitude of force on wheel B is 2 N
Answer:
The banking angle is 23.84 degrees.
Explanation:
Given that,
Radius of the curve, r = 194 m
Speed of the car, v = 29 m/s
On the banked curve, the centripetal force is balanced by the force of friction such that,




So, the banking angle is 23.84 degrees. Hence, this is the required solution.
Answer:
0.3858 Nm
Explanation:
The torque of the couple is the dot product of the force vector and the couple vector from 1 end of the ruler to the center. This equals to the product of their magnitude times the cosine() of the angle made by their direction:

Answer:
Im pretty sure that its, the metals and nonmetals, electrons transferred.