To solve this problem we will apply the concepts related to energy conservation, so the potential energy in the package must be equivalent to its kinetic energy. From there we will find the speed of the package in the vertical component. The horizontal component is given, as it is the same as the one the plane is traveling to. Vectorially we will end up finding its magnitude. So,


Here,
m = Mass
g = Gravity
h = Height
v = Velocity
Rearranging to find the velocity

Replacing,


Using the vector properties the magnitude of the velocity vector would be given by,



Therefore the package is moving to 66.2m/s
Answer:
28.2 m/s
Explanation:
The range of a projectile launched from the ground is given by:

where
v is the initial speed
g = 9.8 m/s^2 is the acceleration of gravity
is the angle at which the projectile is thrown
In this problem we have
d = 81.1 m is the range
is the angle
Solving for v, we find the speed of the projectile:

Answer : The final temperature of the mixture is 
Explanation :
First we have to calculate the mass of water.
Mass = Density × Volume
Density of water = 1.00 g/mL
Mass = 1.00 g/mL × 180 cm³ = 180 g
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of hot water (liquid) = 
= specific heat of ice (solid)= 
= mass of hot water = 180 g
= mass of ice = 20 g
= final temperature of mixture = ?
= initial temperature of hot water = 
= initial temperature of ice = 
Now put all the given values in the above formula, we get


Therefore, the final temperature of the mixture is 
The redshift of light from galaxies and the uniform distribution of cosmic background radiation
low temp is low ke, momentum eyc ... molecules hit walls withless speed ....low pressure