The answer is D, the amount of energy stays the same.
Answer:
4.6×10^-7 m or 0.46nm
Explanation:
From
Wo= hc/λ
Where:
Wo= work function of the metal
h= planks constant
c= speed of light
λ= wavelength
λ= hc/Wo
λ= 6.6×10^-34 × 3×10^8/4.30×10^-19
λ= 4.6×10^-7 m
Answer:
The second dart leaves the gun two times as faster than the first one.
Explanation:
Assuming no energy loss during the spring-dart energy transfer, we have by the conservation of energy principle

Given an arbitrary
and its double,
, launch velocities are

Air pressure is the wi get of air molecules pressing down on the earth. The pressure of the air molecules changes as you move upward from sea level into the atmosphere, the highest pressure is at sea level where the density of the air molecules is the greatest.
When talking about orbits, it would have to be a mixture of both A. and B. since Newton's first law, gravity plays a huge part in an orbit. However, the universal gravitation law also tells us the relationship between two massive objects in orbit. But to choose only one, it would have to be B. Newton's first law