1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Troyanec [42]
2 years ago
11

A 120-kg roller coaster cart is being tested on a new track, and a crash-test dummy is loaded into it. The roller coaster starts

from rest at point A which is 25 m above point B. In your own words, what physics ideas would you be able to use to predict how fast the cart is moving at point B? What calculations would you use, what things would you be measuring, and what physics principles or laws would you use to make this calculation
Physics
1 answer:
avanturin [10]2 years ago
5 0

Answer:

vb = 22.13 m/s

So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.

Explanation:

In order to find the speed of roller coaster at Point B, we will use the law of conservation of Energy. In this situation, the law of conservation of energy states that:

K.E at A + P.E at A = K.E at B + P.E at B

(1/2)mvₐ² + mghₐ = (1/2)m(vb)² + mg(hb)

(1/2)vₙ² + ghₐ = (1/2)(vb)² + g(hb)

where,

vₙ = velocity of roller coaster at point a = 0 m/s

hₙ = height of roller coaster at point a = 25 m

g = 9.8 m/s²

vb = velocity of roller coaster at point B = ?

hb = Height of Point B = 0 m (since, point is the reference point)

Therefore,

(1/2)(0 m/s)² + (9.8 m/s²)(25 m) = (1/2)(vb)² + (9.8 m/s²)(0 m)

245 m²/s² * 2 = vb²

vb = √(490 m²/s²)

<u>vb = 22.13 m/s</u>

<u>So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.</u>

You might be interested in
If two children, with masses of 16 kg and 24 kg , sit in seats opposite one another, what is the moment of inertia about the rot
Elena-2011 [213]

Answer:

The moment of inertia about the rotation axis is 117.45 kg-m²

Explanation:

Given that,

Mass of one child = 16 kg

Mass of second child = 24 kg

Suppose a playground toy has two seats, each 6.1 kg, attached to very light rods of length r = 1.5 m.

We need to calculate the moment of inertia

Using formula of moment of inertia

I=I_{1}+I_{2}

I=(m+m_{1})\times r^2+(m+m_{2})\times r^2

m = mass of seat

m₁ =mass of one child

m₂ = mass of second child

r = radius of rod

Put the value into the formula

I=(16+6.1)\times(1.5)^2+(24+6.1)\times(1.5)^2

I=117.45\ kg-m^2

Hence, The moment of inertia about the rotation axis is 117.45 kg-m²

8 0
3 years ago
An athlete at the gym holds a 3.0 kg steel ball in his hand. His arm is 60 cm long and has a mass of 3.8 kg, with the center of
Serggg [28]

Answer:

(a) τ = 26.58 Nm

(b) τ = 18.79 Nm

Explanation:

(a)

First we find the torque due to the ball in hand:

τ₁ = F₁d₁

where,

τ₁ = Torque due to ball in hand = ?

F₁ = Force due to ball in hand = m₁g = (3 kg)(9.8 m/s²) = 29.4 N

d₁ = perpendicular distance between ball and shoulder = 60 cm = 0.6 m

τ₁ = (29.4 N)(0.6 m)

τ₁ = 17.64 Nm

Now, we calculate the torque due to the his arm:

τ₁ = F₁d₁

where,

τ₂ = Torque due to arm = ?

F₂ = Force due to arm = m₂g = (3.8 kg)(9.8 m/s²) = 37.24 N

d₂ = perpendicular distance between center of mass and shoulder = 40% of 60 cm = (0.4)(60 cm) = 24 cm = 0.24 m

τ₂ = (37.24 N)(0.24 m)

τ₂ = 8.94 Nm

Since, both torques have same direction. Therefore, total torque will be:

τ = τ₁ + τ₂

τ = 17.64 Nm + 8.94 Nm

<u>τ = 26.58 Nm</u>

<u></u>

(b)

Now, the arm is at 45° below horizontal line.

First we find the torque due to the ball in hand:

τ₁ = F₁d₁

where,

τ₁ = Torque due to ball in hand = ?

F₁ = Force due to ball in hand = m₁g = (3 kg)(9.8 m/s²) = 29.4 N

42.42 cm = 0.4242 m

τ₁ = (29.4 N)(0.4242 m)

τ₁ = 12.47 Nm

Now, we calculate the torque due to the his arm:

τ₁ = F₁d₁

where,

τ₂ = Torque due to arm = ?

F₂ = Force due to arm = m₂g = (3.8 kg)(9.8 m/s²) = 37.24 N

d₂ = perpendicular distance between center of mass and shoulder = 40% of (60 cm)(Cos 45°) = (0.4)(42.42 cm) = 16.96 cm = 0.1696 m

τ₂ = (37.24 N)(0.1696 m)

τ₂ = 6.32 Nm

Since, both torques have same direction. Therefore, total torque will be:

τ = τ₁ + τ₂

τ = 12.47 Nm + 6.32 Nm

<u>τ = 18.79 Nm</u>

3 0
2 years ago
(a) Neil A. Armstrong was the first person to walk on the moon. The distance between the earth and the moon is . Find the time i
a_sh-v [17]

Answer:

a)<em> It took 1.28 seconds to Neil Armstrong's voice to reach the Earth via radio waves. </em>

b) <em>The minimum time that will be required for a message from Mars to reach the Earth via radio waves is 192 seconds. </em>

Explanation:

The electromagnetic spectrum is the distribution of radiation due to the different frequencies at which it radiates and its different intensitie. That radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it.

The distribution of the radiation in the electromagnetic spectrum can also be given in wavelengths, but it is more frequent to work with it at frequencies:

  • Gamma rays
  • X-rays
  • Ultraviolet rays
  • Visible region
  • Infrared
  • Microwave
  • Radio waves.

Any radiation that belongs to electromagnetic spectrum has a speed in vacuum of 3x10^{8}m/s.  

<em>a) Find the time it took for his voice to reach the Earth via radio waves.</em>

To know the time that took for Neil Armstrong's voice to reach the Earth via radio waves, the following equation can be used:

c = \frac{d}{t}  (1)

Where v is the speed of light, d is the distance and t is the time.

Notice that t can be isolated from equation 1.

t = \frac{d}{c}  (2)

The distance from the Earth to the Moon is 3.85x10^{8} m, therefore.

t = \frac{3.85x10^{8} m}{3x10^{8}m/s}

t = 1.28s

Hence, it took 1.28 seconds to Neil Armstrong's voice to reach the Earth via radio waves.

<em>b) Determine the minimum time that will be required for a message from Mars to reach the Earth via radio waves.</em>

The distance from the Earth to the Mars at its closest approach is 5.76x10^{10}m, therefore.

t = \frac{5.76x10^{10}m}{3x10^{8}m/s}

t = 192s

Hence, the minimum time that will be required for a message from Mars to reach the Earth via radio waves is 192 seconds.

3 0
3 years ago
how much force would be required to produce 88 j of work when pushing a box 1.1meters at an angle of 10 degrees?
ycow [4]

Answer:81.235N

Explanation:

Work=88J

theta=10°

distance=1.1 meters

work=force x cos(theta) x distance

88=force x cos10 x 1.1 cos10=0.9848

88=force x 0.9848 x 1.1

88=force x 1.08328

Divide both sides by 1.08328

88/1.08328=(force x 1.08328)/1.08328

81.235=force

Force=81.235

5 0
2 years ago
My fifth time asking this, but can someone please help me with these four????
givi [52]
I think 3 is 1.5...i kinda hope that helps for one
3 0
2 years ago
Other questions:
  • The amount of gas can affect the pressure of the gas. true or false
    13·1 answer
  • 7. A pool cue ball moving at 2.1 m/s east collides in a straight line with the eight ball at rest. Find the velocity of the eigh
    7·2 answers
  • A revolutionary war cannon, with a mass of 2240 kg, fires a 15.5 kg ball horizontally. The cannonball has a speed of 131 m/s aft
    5·1 answer
  • Which of the following statements are true?
    9·2 answers
  • Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible fricti
    15·1 answer
  • When leaving a fish tank, a ray moving at 31.0 deg in glass (n = 1.50) exits into the air. At what angle does it enter the air?
    5·1 answer
  • When a certain air-filled parallel-plate capacitor is connected across a battery, it acquires a charge of 200 µC on each plate.
    10·1 answer
  • A cruise ship travels across a river at 25 meters per minute. If the river is 6200 meters wide, how long
    6·1 answer
  • According to the law of conservation of matter, we know that the total number of atoms does not change in a chemical reaction an
    6·1 answer
  • For horizontally-launched projectiles, which of the following describes acceleration in both directions with a = 0 and a = -9.8m
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!