Answer:
its bc of the way earth spins
Explanation:
<h3><u>Answer;</u></h3>
Doubles and Remains the same
<h3><u>Explanation;</u></h3>
- The effect of doubling the absolute temperature of a sample of a monoatomic ideal gas is that,the pressure doubles and density of the sample of gas remains the same.
- <em><u>According to ideal gas equation; PV = nRT; Where P is pressure and V is the Volume, n is the number of moles, R is the ideal gas constant and T is the absolute temperature.</u></em>
- <em><u>Therefore, when the temperature of the mono atomic ideal gas is doubled, the pressure of the gas will also doubles.</u></em>
- However, in a closed chamber mass of the ideal gas is invariant, since density depends only on the mass and volume therefore the density of the ideal is gas will remain the same.
Answer:
-10C= Solid
10C= Liquid
50C= Liquid
90C= Liquid
110C= Gas
120C= Gas
Explanation:
Below 0 degree C (Celsius), water is frozen means it is in the form of ice. After 0 degree, once we keep it in room temperature, the ice starts becoming liquid (water), and once we heat water, after 100 degree C (Celsius) water starts boiling and thus starts entering gaseous state.
To solve this problem we will apply the concepts related to the double slit-experiment. Under this concept we understand the relationship between the minimum angle, depending on the order of the fringes, the wavelength and the distance between slits. Therefore we have the following relation,

Here,
m = Order of the fringes
D = Distance between slits
= Wavelength
Replacing with our values we have,


Through the relationship between distances then we have that the basic amplification distance is given by the relationship between the distance of the slit L and the angle, then



Thus the width of the central maximum is


Therefore the widht is 0.466m
Answer:
The average current density at the position of the area.
Explanation:
Current density is the vector whose magnitude is electric current in the cross sectional area. Current density is vector quantity which is measured in amperes. The average current density is dependent on the electric current flow. It has perpendicular direction of flow and scalar magnitude.