The total resistance is 420 ohm.
A circuit with resistive elements of 220, 100, 57, and 43 produce what total resistance
R= 220+ 100+ 57+ 43
= 420 Ω
What is resistance and its types?
Resistance is a measure of the opposition to current flow in an electrical circuit also known as ohmic resistance or electrical resistance. Ohms are measured as resistance, symbolized by the Greek letter omega (Ω). The ratio of the applied voltage to the current through the material is then known as resistance.
What causes resistance?
An electric current flows when electrons move through a conductor, such as a metal wire. The moving electrons can collide with the ions in the metal. This makes it more difficult for the current to flow, and causes resistance.
Learn more about resistance:
brainly.com/question/17563681
#SPJ4
Force is defined as the push or pull applied to the body. Its unit is Newton. The net force will be 10 N on the right side.
What is force?
Force is defined as the push or pull applied to the body. Sometimes it is used to change the shape, size, and direction of the body. Force is defined as the product of mass and acceleration. Its unit is Newton.
The given data in the problem is;
F₁ is forced by person 1 = 100 N
F₂ is forced by person 2= 90 N
Fₓ is the net force
Fₓ = F₁ -F₂
Fₓ = 100-90
Fₓ= 10 N
Hence the net force will be 10 N on the right side.
To learn more about the force refer to the link;
brainly.com/question/26115859
Answer:
a) Block 1 = 72.9kgm/s
Block 2 = 0kgm/s
b) vf = 1.31m/s
c) ∆KE = 936.36Joules
Explanation:
a) Momentum = mass× velocity
For block 1:
Momentum = 2.7×27
= 72.9kgm/s
For block 2:
Momentum = 53(0) (body is initially at rest)
= 0kgm/s
b) Using the law of conservation of momentum
m1u1+m2u2 = (m1+m2)v
m1 and m2 are the masses of the block
u1 and u2 are their initial velocity
v is the common velocity
Given m1 = 2.7kg, u1 = 27m/s, m2 = 53kg, u2 = 0m/s (body at rest)
2.7(27)+53(0) = (2.7+53)v
72.9 = 55.7v
V = 72.9/55.7
Vf = 1.31m/s
c) kinetic energy = 1/2mv²
Kinetic energy of block 1 = 1/2×2.7(27)²
= 984.15Joules
Kinetic energy of block 2 before collision = 0kgm/s
Total KE before collision = 984.15Joules
Kinetic energy after collision = 1/2(2.7+53)1.31²
= 1/2×55.7×1.31²
= 47.79Joules
∆KE = 984.15-47.79
∆KE = 936.36Joules