Answer:

Step-by-step explanation:
The fractional exponent m/n is often translated to radical form as ...
![x^{\frac{m}{n}}=\sqrt[n]{x^m}](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%3D%5Csqrt%5Bn%5D%7Bx%5Em%7D)
In this case, I find it easier to evaluate as ...
![x^{\frac{m}{n}}=(\sqrt[n]{x})^m=\boxed{(\sqrt{9})^3=3^3=27}](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%3D%28%5Csqrt%5Bn%5D%7Bx%7D%29%5Em%3D%5Cboxed%7B%28%5Csqrt%7B9%7D%29%5E3%3D3%5E3%3D27%7D)
I.) (5x+3)/4-(2x-4)/3=5
Clear fractions:
3·((5x+3)/4)=15x+9
4·((2x-4)/3)=8x-16
15x+9-(8x-16)=5
15x+9-8x+16=5
Combine like terms:
7x+25=5
7x=-20
x=-20/7
II.) (3/11)·(5/6)-(9/12)·(4/3)+(5/13)·(6/15)
Remember PEMDAS
So first multiply:
3/11·5/6=15/66
9/12·4/3=3/3·1/1=3/3=1
5/13·6/15=1/13·6/3=6/39=2/13
(15/66)-1+(2/13)
Combine:
15/66-1/1=15/66-66/66=-51/66
-51/66+2/3=-51/66+44/66=-7/66
Answer: -7/66 :)