You have to use the equation F=ma and solve for m to get m=F/a.
m=mass in kg
F=force (in this case 350N)
a=acceleration (in this case 10m/s²)
when you plug everything in you should find that m=35kg
I hope this helps.
Answer: The independent variable is the type of metal being used.
{Note: The "dependent variable" is the "measured density" that corresponds to each of the metals."}.
___________________________________________
Explanation:
___________________________________________
The "independent variable", which is plotted on the "x-axis" (horizontal axis), is the variable that can be "controlled/manipulated". In this case, this would be the type of metal chosen.
The "dependent variable" , which is plotted on the "y-axis" (vertical axis) is the "obtained value/measurement/result" (that "cannot be controlled/manipulated").
In this case, the "density", which is the "measured value" that corresponds to the selected "meal", is the "dependent variable".
___________________________________________
Hope this helpful to you!
Wishing you well!
___________________________________________
Answer:
The new volume is 60ml
Explanation
using the equation p1v1/n1t1=p2v2/n2t2 we would divied 30 by 25 the multiply by 50 to get 60
Answer:
a) C4H6+2H2=C4H10
b) 4Na+CF4=4NaF+C
c) 2Na+2NH3=2NaNH2+H2
d) 2H202=2H2O+O2
Explanation:
Try and make sure there is the same number of reactants as products
Given parameters:
Initial volume = 120ml
Initial temperature = 35°C
Initial pressure = 1.2bar
Final volume = 180ml
Final temperature = 35°C
Unknown:
Final pressure = ?
To solve this problem, we apply the combined gas law. The expression is given below;

Where P₁ is the initial pressure
P₂ is the final pressure
V₁ is the initial volume
V₂ is the final volume
T₁ is the initial temperature
T₂ is the final temperature
We need to convert the parameters to standard units
take the volume to dm³;
1000ml = 1dm³
120ml =
dm³ = 0.12dm³ = initial volume
Final volume;
1000ml = 1dm³
180ml =
dm³ = 0.18dm³
Now, the temperature;
K = 273 + °C
Initial temperature = 273 + 35 = 308k
Final temperature = 308k
We then input the parameters into the equation;
Solving for P₂;
P₂ = 0.8bar
The new pressure or final pressure in the vessel is 0.8bar