Answer:
I. Increasing pressure will allow more frequent successful collision between particles due to the particles being closer together.
II. Rate of reaction increases due to more products being made; as increased pressure favours the exothermic side of the equilibrium.
III. Increasing temperature provides particles lots of (Kinetic) energy, for more frequent successful collision due to the particles moving at a faster rate than before. However, favouring the endothermic side of the equilibrium due to lots of energy required to break and form new bonds.
IV. Rate of reaction increases due to increase temperature favouring both directions of the equilibrium - causing products to form faster.
Hope this helps!
Answer:
91.1835 nm
Explanation:
Given that the ionization energy of the oxygen molecule = 1314 kJ/mol
It means that
1 mole of oxygen molecules can be ionized by the energy = 1314 kJ = 1314000 J
1 mole of molecules contains 6.022 × 10²³ atoms
So,
6.022 × 10²³ atoms of oxygen molecules can be ionized by the energy = 1314000 J
1 atom require
of energy
Energy = 
Also
Where,
h is Plank's constant having value
c is the speed of light having value 
is the wavelength
So,
Also,
So, wavelength = 91.1835 nm
<span>Find a periodic table of elements. ... <span>Label each column on the periodic table of elements from 1 to 18. ... </span><span>Find your element on the table. ... </span>Use the group numbers to determine the number of valence electrons. </span><span>imgres</span>