Answer:
1.06 m
Explanation:
Since the charge is at the centre of two concentric spheres, we use the formula for electric potential due to a point charge. V = kq/r. Let r₁ be the radius of the sphere with potential, V₁ = 200 V and r₂ be the radius of the sphere with potential, V₂ = 82.0 V. From V = kq/r, r = kq/V. So that r₁ = kq/V₁ and r₂ = kq/V₂. The magnitude of the difference r₁ - r₂ is the distance between the two surfaces. q the charge equals 1.63 × 10⁻⁸ C
r₂ - r₁ = kq/V₂ - kq/V₁ = kq(1/V₂ - 1/V₁) = 1.63 × 10⁻⁸ × 9 × 10⁹ (1/82 -1/200) m = 1.63 × 10⁻⁸ × 9 × 10⁹ (0.0122 - 0.005) = 1.63 × 10⁻⁸ × 9 × 10⁹(0.0072) m = 1.06 m
The distance between them is 1.06 m
Answer:
C
Explanation:
They are first hand sources so they are more reliable and detailed...
Answer:
Densidad de la placa = 20 g/cm³.
La placa no es de oro.
Explanation:
Para encontrar la densidad de la placa rectangular primero debemos hallar su volumen:
Ahora, encontremos al densidad de la placa:

Dado que la densidad del oro es 19.32 g/cm³ y que la densidad de la placa rectangular calculada es 20 g/cm³, podemos decir que dicha placa no es de oro.
Espero que te sea de utilidad!
Answer:
a)-2m/s^2
b)27.2m/s
Explanation:
Hello! The first step to solve this problem is to find the mass of the block remembering that the definition of weight force is mass by gravity (g=9.8m / s ^ 2)
W=455N=weight
W=mg
W=455N=weight

The second step is to draw the free body diagram of the body (see attached image) and use Newton's second law that states that the sum of the forces is equal to mass by acceleration

for point b we use the equations of motion with constant acceleration to find the velocity

Where
Vf = final speed
Vo = Initial speed
=0
A = acceleration
=2m/s
X = displacement
=6.8m
Solving

What is the strength of the electric field between two parallel conducting plates separated by 1.00 cm and having a potential difference (voltage) between them of 1.50×10^4v ?