Answer:
255 Hz
Explanation:
With 5 beats per second with the 250 Hz fork, we know the unknown fork is either 250 - 5 = 245Hz or 250 + 5 = 255 Hz
With 15 beats per second with the 270 Hz fork, we know the unknown fork is either 270 - 15 = 255Hz or 270 + 15 = 285 Hz (most people would have a hard time discerning 15 beats per second... 5 per second is hard enough)
As 255 is the common frequency, it is the one selected.
Answer:
<em>The force of kinetic friction between Kiera and the floor is 9.24 N</em>
Explanation:
<u>Friction Force</u>
When an object is moving and encounters friction in rough surfaces, it loses acceleration and/or velocity because the friction force opposes motion.
The friction force when an object is moving on a horizontal surface is calculated by:
Where μ is the coefficient of static or kinetics friction and N is the normal force.
If no forces other then the weight and the normal are acting upon the y-direction, then the weight and the normal are equal in magnitude:
N = W
Thus, the friction force is:
Kiera, the W=330 N girl steps in water that has a coefficient of friction of μ=0.028 with the floor.
The kinetic friction force is:
Fr = 0.028*330
Fr = 9.24 N
The force of kinetic friction between Kiera and the floor is 9.24 N
Only once hope this helps
Explanation:
Given that,
Radius R= 2.00
Charge = 6.88 μC
Inner radius = 4.00 cm
Outer radius = 5.00 cm
Charge = -2.96 μC
We need to calculate the electric field
Using formula of electric field
(a). For, r = 1.00 cm
Here, r<R
So, E = 0
The electric field does not exist inside the sphere.
(b). For, r = 3.00 cm
Here, r >R
The electric field is
Put the value into the formula
The electric field outside the solid conducting sphere and the direction is towards sphere.
(c). For, r = 4.50 cm
Here, r lies between R₁ and R₂.
So, E = 0
The electric field does not exist inside the conducting material
(d). For, r = 7.00 cm
The electric field is
Put the value into the formula
The electric field outside the solid conducting sphere and direction is away of solid sphere.
Hence, This is the required solution.